Enhancing transdermal drug delivery
formulation and evaluation of simvastatin-loaded invasomes in carbopol gel for improved permeability and prolonged release
DOI:
https://doi.org/10.1590/Keywords:
Simvastatin, Invasome, Transdermal delivery, Permeability, Terpene, CarbopolAbstract
The transdermal pathway serves as a significant route for achieving localized or systemic effects. Within this context, the stratum corneum is a crucial barrier limiting the permeation of many drugs. To surmount this barrier, carriers, and nanocarriers have been utilised, notably ‘invasome’ being one such example. In our study, we formulated invasomes loaded with simvastatin using the conventional thin-layer evaporation technique. This formulation involved the use of soy phosphatidylcholine, terpene (Limonene), chloroform, and ethanol. Simvastatin-loadedinvasomes were incorporated into a carbopol 934 solution to create a gel. We prepared and assessed different formulationsfor various parameters, including zeta potential, scanning electron microscopy, entrapment efficiency, viscosity, and drug content, and conducted in vitro studies. The entrapment efficiency was as high as 83.17±0.61%. The maximum in vitro drug permeation (45.44±0.4%) was found in the gel with 0.5% soy phosphatidylcholine and 0.25% terpene. Upon evaluating these parameters, our findings suggest that the simvastatin invasomal gel effectively enhances drug permeability across membranes and successfully achieves prolonged drug release.
Downloads
References
Aqil M, Ahad A, Sultana Y, Ali A. Status of terpenes as skin penetration enhancers. Drug Discov Today. 2007; 12(23-24): 1061-1067. doi: 10.1016/j.drudis.2007.09.001.
» https://doi.org/10.1016/j.drudis.2007.09.001
Babaie S, Del Bakhshayesh AR, Ha JW, Hamishehkar H, Kim KH. Invasome: A novel nanocarrier for transdermal drug delivery. Nanomaterials. 2020; 10(2): 341. doi: 10.3390/nano10020341.
» https://doi.org/10.3390/nano10020341
Berrocal MC, Buján J, García-Honduvilla N, Abeger A. Comparison of the effects of dimyristoyl and soya phosphatidylcholine liposomes on human fibroblasts. Drug Deliv. 2000; 7(1): 37-44. doi: 10.1080/107175400266777.
» https://doi.org/10.1080/107175400266777
Berthelsen R, Klitgaard M, Rades T, Müllertz A. In vitro digestion models to evaluate lipid based drug delivery systems; present status and current trends. Adv Drug Deliv Rev. 2019; 142: 35-49. doi: 10.1016/j.addr.2019.06.010.
» https://doi.org/10.1016/j.addr.2019.06.010
Chakraborty S, Dhibar M, Das A, Swain K, Pattnaik S. A Critical Appraisal of Lipid Nanoparticles Deployed in Cancer Pharmacotherapy. Recent Adv Drug Deliv Formul. 2023. doi: 10.2174/2667387817666230726140745.
» https://doi.org/10.2174/2667387817666230726140745
Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001; 13(2): 123-133. doi: 10.1016/s0928-0987(01)00095-1.
» https://doi.org/10.1016/s0928-0987(01)00095-1
El-Say KM, Ahmed TA, Badr-Eldin SM, Fahmy U, Aldawsari H, Ahmed OAA. Enhanced permeation parameters of optimized nanostructured simvastatin transdermal films: Ex Vivo and In Vivo evaluation. Pharm Dev Technol. 2015; 20(8): 919-926. doi: 10.3109/10837450.2014.938859.
» https://doi.org/10.3109/10837450.2014.938859
Fuentes K, Matamala C, Martínez N, Zúñiga RN, Troncoso E. Comparative study of physicochemical properties of nanoemulsions fabricated with natural and synthetic surfactants. Processes. 2021; 9(11): 2002. https://doi.org/10.3390/pr9112002
» https://doi.org/10.3390/pr9112002
Hasan M, Khatun A, Fukuta T, Kogure K. Noninvasive transdermal delivery of liposomes by weak electric current. Adv Drug Deliv Rev. 2020; 154-155: 227-235. doi: 10.1016/j.addr.2020.06.016.
» https://doi.org/10.1016/j.addr.2020.06.016
Hota SS, Pattnaik S, Mallick S. Formulation and evaluation of multidose propofol nanoemulsion using statistically designed experiments. Acta Chim Slov. 2020; 67: 179-188.
Kaltschmidt BP, Ennen I, Greiner JFW, Dietsch R, Patel A, Kaltschmidt B, Kaltschmidt C and Hutten A. Preparation of terpenoid-invasomes with selective activity against s. aureus and characterization by cryo transmission electron microscopy. Biomedicines. 2020; 8(5): 105.
Kumar B, Pandey M, Aggarwal R, Sahoo PK. A comprehensive review on invasomal carriers incorporating natural terpenes for augmented transdermal delivery. Futur J Pharm Sci. 2022; 8: 50. https://doi.org/10.1186/s43094-022-00440-6
» https://doi.org/10.1186/s43094-022-00440-6
Li H, Rabearivony A, Zhang W, Chen S, An X, Liu C. Chronopharmacology of simvastatin on hyperlipidaemia in high-fat diet-fed obese mice. J Cell Mol Med. 2020; 24(18): 11024-11029. doi: 10.1111/jcmm.15709.
» https://doi.org/10.1111/jcmm.15709
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA. 2008; 105(38): 14265-70. doi: 10.1073/pnas.0805135105.
» https://doi.org/10.1073/pnas.0805135105
Manjula B, Gupta VRM, Sekhar KBC. Comparative in vivo evaluation of simvastatin after oral and transdermal administration in rabbits. Curr Trends Biotechnol Pharm. 2022; 16(3s), 1-8.
Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014; 190: 3-8. doi: 10.1016/j.jconrel.2014.03.054
» https://doi.org/10.1016/j.jconrel.2014.03.054
Pattnaik S, Swain K, Bindhani A, Mallick S. Influence of chemical permeation enhancers on transdermal permeation of alfuzosin: An investigation using response surface modeling. Drug Dev Ind Pharm. 2011a; 37: 465-474.
Pattnaik S, Swain K, Mallick S, Lin Z. Effect of casting solvent on crystallinity of ondansetron in transdermal films. Int J Pharm. 2011b; 406: 106-110.
Pattnaik S, Swain K, Mallick S. Influence of Polymeric System and loading dose on drug release from alfuzosin hydrochloride transdermal films. Lat Am J Pharm. 2009; 28: 62-69.
Pattnaik S, Swain K, Rao JV, Varun T, Mallick S. Temperature influencing permeation pattern of alfuzosin: An investigation using DoE. Medicina (B Aires). 2015; 51: 253-261.
Prasanthi D, Lakshmi PK. Iontophoretic Transdermal delivery of finasteride in vesicular invasomal carriers. Pharm Nanotechnol. 2013; 1(2). https://dx.doi.org/10.2174/2211738511301020009
» https://dx.doi.org/10.2174/2211738511301020009
Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Controlled Release. 2022; 341: 132-146. doi: 10.1016/j.jconrel.2021.11.025.
» https://doi.org/10.1016/j.jconrel.2021.11.025
Schafer N, Balwierz R, Biernat P, Ochędzan-Siodłak W, Lipok J. Natural ingredients of transdermal drug delivery systems as permeation enhancers of active substances through the stratum corneum. Mol Pharm. 2023; 20(7): 3278-3297. doi: 10.1021/acs.molpharmaceut.3c00126.
» https://doi.org/10.1021/acs.molpharmaceut.3c00126
Sharma B, Bharti R, Sharma R. Controlled drug delivery: “A review on the applications of smart hydrogel”. Mater Today Proc. 2022; 65.
Swain K, Pattnaik S, Chandra SAHU S, Mallick S. Feasibility assessment of ondansetron hydrochloride transdermal systems: Physicochemical characterization and in vitro permeation studies. Lat Am J Pharm. 2009; 28: 706-720.
Swain K, Pattnaik S, Yeasmin N, Mallick S. Preclinical evaluation of drug in adhesive type ondansetron loaded transdermal therapeutic systems. Eur J Drug Metab Pharmacokinet. 2011; 36: 237-241.
Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004; 4(1): 35-51. doi: 10.1517/14712598.4.1.35.
» https://doi.org/10.1517/14712598.4.1.35
Zhang J, Wang J, Qiao F, Liu Y, Zhou Y, Li M, et al. Polymeric non-spherical coarse microparticles fabricated by double emulsion-solvent evaporation for simvastatin delivery. Colloids Surf B Biointerfaces. 2021; 199: 111560. doi: 10.1016/j.colsurfb.2021.111560.
» https://doi.org/10.1016/j.colsurfb.2021.111560
Zidan AS, Hosny KM, Ahmed OAA, Fahmy UA. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Deliv. 2016; 23(5): 1536-1549. doi: 10.3109/10717544.2014.980896.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Brazilian Journal of Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.