Nanostructured copper as an alternative source to copper sulphateas a growth promoter for nursery piglets
DOI:
https://doi.org/10.11606/issn.1678-4456.bjvras.2025.220957Keywords:
Antibiotics, Additives, Nanoparticles, Nutrition, Swine productionAbstract
Antimicrobial feed additives are commonly used in swine production to improve pig health and performance, but their use can contribute to the development of bacterial resistance. In this sense, new nutritional technologies that promote animal health and productivity without compromising bacterial susceptibility must be evaluated. This study aimed to assess the effects of nanostructured copper as a growth promoter for piglets in the nursery phase. A total of 135 piglets at 28 days of age were distributed in a randomized block design (sex and initial weight) and assigned to five dietary treatments: negative control (without growth promoters); positive control (200 mg/kg copper sulfate inclusion); and three diets with different nanostructured copper inclusions (10, 20, and 30 mg/kg of the diet). Body weight (BW), average daily weight gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) were used to characterize piglet performance in the nursery phase. Daily fecal scores were used to describe the prevalence of enteric disorders, and economic analysis was used as a parameter of the financial viability of nanostructured copper supplementation for weaned piglets. After seven days of the experiment, the negative control group pigs had 7.75% greater BW (P<0.05) than the copper sulfate group pigs. From day 21 to 42 of the experiment, the copper sulfate group animals had a greater ADFI (P<0.05) than all other experimental groups. For the average fecal score, pigs fed the 20 mg/kg nanostructured copper inclusion had a 13 percent higher score (P<0.05) than the copper sulfate group, indicating a greater incidence of diarrhea. Therefore, at the evaluated dietary concentrations, nanostructured copper was ineffective in improving piglet performance in the nursery phase.
Downloads
References
Aarestrup F. Get pigs off antibiotics. Nature. 2012;486(7404):465- 6. http://doi.org/10.1038/486465a. PMid:22739296.
Aarestrup FM, Wegener HC, Collignon P. Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev Anti Infect Ther. 2008;6(5):733-50. http://doi.org/10.1586/14787210.6.5.733. PMid:18847409.
Agga GE, Scott HM, Amachawadi RG, Nagaraja TG, Vinasco J, Bai J, Norby B, Renter DG, Dritz SS, Nelssen JL, Tokach MD. Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs. Prev Vet Med. 2014;114(3-4):231-46. http://doi.org/10.1016/j.prevetmed.2014.02.010. PMid:24655578.
Ahmed ST, Hossain ME, Kim GM, Hwang JA, Ji H, Yang CJ. Effects of resveratrol and essential oils on growth performance, immunity, digestibility and fecal microbial shedding in challenged piglets. Asian-Australas J Anim Sci. 2013;26(5):683-90. http://doi.org/10.5713/ajas.2012.12683. PMid:25049839.
Alves LKS, Gameiro AH, Schinckel AP, Garbossa CAP. Development of a swine production cost calculation model. Animals. 2022;12(17):2229. http://doi.org/10.3390/ani12172229.
Alves LKS, Geremias HR, Santos FM, Silva RMC, Raineri C, Gameiro AH, Garbossa CAP. Informativo mensal do Índice de Custo de Produção do Suíno Paulista (ICPS). São Paulo: USP; 2023. http://dx.doi.org/10.13140/RG.2.2.23320.88325.
Apić I, Stančić I, Kučević D, Apić J, D’Inca J, Zekić D. Influence of saccharomyces cerevisiae (actisaf sc 47®) as feed aditive in gestation or lactation diets on sows and nursing piglets health and performance. Arh Vet Med. 2016;9(2):39-52. http://doi.org/10.46784/e-avm.v9i2.88.
Barbosa KA, Genova JL, Pazdziora ML, Azevedo LB, Wendt GN, Rupolo PE, Rodrigues GA, Carvalho ST, Costa e Silva LF, Costa LB, Saraiva A, Carvalho PLO. Effects of combined feed additives in diets to support growth performance and intestinal health profile in nursery piglets. Livest Sci. 2022;266:105121. http://doi.org/10.1016/j.livsci.2022.105121.
Barton MD. Impact of antibiotic use in the swine industry. Curr Opin Microbiol. 2014;19(1):9-15. http://doi.org/10.1016/j.mib.2014.05.017. PMid:24959754.
Blavi L, Solà D, Monteiro A, Pérez JF, Stein HH. Inclusion of dicopper oxide instead of copper sulfate in diets for growing–finishing pigs results in greater final body weight and bone mineralization, but reduced accumulation of copper in the liver. J Anim Sci. 2021;99(6):skab127. http://doi.org/10.1093/jas/skab127. PMid:33880556.
Bogdanovic U, Lazic V, Vodnik V, Budimir M, Markovic Z, Dimitrijevic S. Copper nanoparticles with high antimicrobial activity. Mater Lett. 2014;128:75-8. http://doi.org/10.1016/j.matlet.2014.04.106.
Carnino BB, Alves LKS, Moraes EIC, Madella GS, Lange CN, Pieretti JC, Tremiliosi GC, Gonçalves JCA, Silveira H, Garbossa CAP. Harnessing silver nanoparticles to promote swine growth: a safer alternative to antibiotics. Braz J Vet Res Anim Sci. 2025;62:e220959. http://doi.org/10.11606/issn.1678-4456.bjvras.2025.220959.
Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater. 2005;17(21):5255-62. http://doi.org/10.1021/cm0505244.
Carpenter CB, Woodworth JC, DeRouchey JM, Tokach MD, Goodband RD, Dritz SS, Wu F, Rambo ZJ. Effects of increasing copper from either copper sulfate or combinations of copper sulfate and a copper–amino acid complex on finishing pig growth performance and carcass characteristics. Transl Anim Sci. 2019;3(4):1263-9. http://doi.org/10.1093/tas/txz112. PMid:32724896.
Cromwell GL. Why and how antibiotics are used in swine production. Anim Biotechnol. 2002;13(1):7-27. http://doi.org/10.1081/ABIO-120005767. PMid:12212945.
Davin R, Lagos LV, Molist F. Short communication: copper bisglycinate can partially or totally replace copper sulfate in diets with either no effects or positive effects on growth performance of weaned pigs. Anim Feed Sci Technol. 2022;285:115223. http://doi.org/10.1016/j.anifeedsci.2022.115223.
Diana A, Boyle LA, Leonard FC, Carroll C, Sheehan E, Murphy D, Manzanilla EG. Removing prophylactic antibiotics from pig feed: how does it affect their performance and health? BMC Vet Res. 2019;15(1):67. http://doi.org/10.1186/s12917-019-1808-x. PMid:30808361.
Dębski B. Supplementation of pigs diet with zinc and copper as alternative to conventional antimicrobials. Pol J Vet Sci. 2016;19(4):917-24. http://doi.org/10.1515/pjvs-2016-0113. PMid:28092617.
Dove CR. The effect of copper level on nutrient utilization of weanling pigs. J Anim Sci. 1995;73(1):166-71. http://doi.org/10.2527/1995.731166x. PMid:7601730.
Espinosa CD, Fry RS, Usry JL, Stein HH. Copper hydroxychloride improves growth performance and reduces diarrhea frequency of weanling pigs fed a corn–soybean meal diet but does not change apparent total tract digestibility of energy and acid hydrolyzed ether extract. J Anim Sci. 2017;95(12):5447-54. http://doi.org/10.2527/jas2017.1702. PMid:29293761.
Forouzandeh A, Blavi L, Pérez JF, D’Angelo M, González-Solé F, Monteiro A, Stein HH, Solà-Oriol D. How copper can impact pig growth: comparing the effect of copper sulfate and monovalent copper oxide on oxidative status, inflammation, gene abundance, and microbial modulation as potential mechanisms of action. J Anim Sci. 2022;100(9):skac224. http://doi.org/10.1093/jas/skac224. PMid:35723874.
Gao J, Yin J, Xu K, Li T, Yin Y. What is the impact of diet on nutritional diarrhea associated with gut microbiota in weaning piglets: a system review. BioMed Res Int. 2019;2019:6916189. http://doi.org/10.1155/2019/6916189. PMid:31976326.
Girard M, Bee G. Invited review: tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal. 2020;14(1):95-107. http://doi.org/10.1017/S1751731119002143. PMid:31571564.
Grecco HAT, Amorim AB, Saleh MAD, Tse MLP, Telles FG, Miassi GM, Pimenta GM, Berto DA. Evaluation of growth performance and gastro-intestinal parameters on the response of weaned piglets to dietary organic acids. An Acad Bras Cienc. 2018;90(1):401-14. http://doi.org/10.1590/0001-3765201820160057. PMid:29466480.
Hill EK, Li J. Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol. 2017;8(1):26. http://doi.org/10.1186/s40104-017-0157-5. PMid:28316783.
Hill GM, Shannon MC. Copper and Zinc nutritional issues for agricultural animal production. Biol Trace Elem Res. 2019;188(1):148-59. http://doi.org/10.1007/s12011-018-1578-5. PMid:30612303.
Hu Q, Liu C, Zhang D, Wang R, Qin L, Xu Q, Che L, Gao F. Effects of low-dose antibiotics on gut immunity and antibiotic resistomes in weaned piglets. Front Immunol. 2020;11:903. http://doi.org/10.3389/fimmu.2020.00903. PMid:32655541.
Jacela JY, DeRouchey JM, Tokach MD, Goodband RD, Nelssen JL, Renter DG, Dritz SS. Feed additives for swine: fact sheets-high dietary levels of copper and zinc for young pigs, and phytase. J Swine Health Prod. 2010;18(2):87-91. http://doi.org/10.54846/jshap/624d.
Jiang XR, Awati A, Agazzi A, Vitari F, Ferrari A, Bento H, Crestani M, Domeneghini C, Bontempo V. Effects of a blend of essential oils and an enzyme combination on nutrient digestibility, ileum histology and expression of inflammatory mediators in weaned piglets. Animal. 2015;9(3):417-26. http://doi.org/10.1017/S1751731114002444. PMid:25275341.
Karasova D, Crhanova M, Babak V, Jerabek M, Brzobohaty L, Matesova Z, Rychlik I. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea – a field study. Res Vet Sci. 2021;135:59-65. http://doi.org/10.1016/j.rvsc.2020.12.022. PMid:33444908.
Kiros TG, Derakhshani H, Pinloche E, D’Inca R, Marshall J, Auclair E, Khafipour E, Van Kessel A. Effect of live yeast saccharomyces cerevisiae (actisaf sc 47) supplementation on the performance and hindgut microbiota composition of weanling pigs. Sci Rep. 2018;8(1):5315. http://doi.org/10.1038/s41598-018-23373-8. PMid:29593306.
Marinho MC, Lordelo MM, Cunha LF, Freire JPB. Microbial activity in the gut of piglets: I. Effect of prebiotic and probiotic supplementation. Livest Sci. 2007;108(1-3):236-9. http://doi.org/10.1016/j.livsci.2007.01.081.
Markowiak P, Śliżewska K. The role of probiotics, prebiotics and symbiotic in animal nutrition. Gut Pathog. 2018;10(21):21. http://doi.org/10.1186/s13099-018-0250-0. PMid:29930711.
Moreira V, Garbossa CAP, Guimarães EBB, Hirai WH, Cruz TA, Alves LKS, Araújo LF. Evaluation of a phytogenic compound with minerals as a possible alternative to ractopamine for finishing pigs. Animals. 2022;12(18):2311. http://doi.org/10.3390/ani12182311. PMid:36139172.
National Research Council – NRC. Nutrient requirements of swine. Washington, D.C.: NRC; 2012. Pedersen KS, Toft N. Intra – and inter-observer agreement when using a descriptive classification scale for clinical assessment of faecal consistency in growing pigs. Prev Vet Med. 2011;98(4):288-91. http://doi.org/10.1016/j.prevetmed.2010.11.016. PMid:21185096.
Pérez VG, Waguespack AM, Bidner TD, Southern LL, Fakler TM, Ward TL, Steidinger M, Pettigrew JE. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J Anim Sci. 2011;89(2):414-25. http://doi.org/10.2527/jas.2010-2839. PMid:20935138.
Pouillart PR, Dépeint F, Abdelnour A, Deremaux L, Vincent O, Mazière JC, Madec JY, Chatelain D, Younes H, Wils D, Saniez MH, Dupas JL. Nutriose, a prebiotic low-digestible carbohydrate, stimulates gut mucosal immunity and prevents tnbs-induced colitis in piglets. Inflamm Bowel Dis. 2010;16(5):783-94. http://doi.org/10.1002/ibd.21130. PMid:19998458.
Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol. 2018;44:421-30. http://doi.org/10.1016/j.jddst.2018.01.009.
Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett. 2012;71(15):114-6. http://doi.org/10.1016/j.matlet.2011.12.055.
SAS Institute Inc. SAS® user’s guide, version 8.1. Cary: SAS Institute Inc.; 2009.
Scott A, Vadalasetty KP, Chwalibog A, Sawosz E. Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnol Rev. 2018;7(1):69-93. http://doi.org/10.1515/ntrev-2017-0159.
Tsiloyiannis VK, Kyriakis SC, Vlemmas J, Sarris K. The effects of organic acids on the control of porcine postweaning diarrhea. Res Vet Sci. 2001;70(3):287-93. http://doi.org/10.1053/rvsc.2001.0476. PMid:11676629.
Usman MS, Zowalaty MEE, Shameli K, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013;8:4467-79.
Vangroenweghe F, Poulsen K, Thas O. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Manag. 2021;7(1):8. http://doi.org/10.1186/s40813-021-00191-5. PMid:33431048.
Villagómez-Estrada S, Pérez JF, Darwich L, Vidal A, van Kuijk S, Melo-Dúran D, Solà-Oriol D. Effects of copper and zinc sources and inclusion levels of copper on weanling pig performance and intestinal microbiota. J Anim Sci. 2020;98(5):skaa117. http://doi.org/10.1093/jas/skaa117. PMid:32277238.
Wang HF, Gao K, Wang C, Zhang WM, Liu JX. Effects of feeding bamboo vinegar and acidifier as an antibiotic substitute on the growth performance and intestinal bacterial communities of weaned piglets. Acta Agric Scand A Anim Sci. 2013;63(3):143-50. http://doi.org/10.1080/09064702.2013.845244.
Wang C, Zhang L, Ying Z, He J, Zhou L, Zhang L, Zhong X, Wang T. Effects of dietary Zinc Oxide Nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biol Trace Elem Res. 2018;185(2):364-74. http://doi.org/10.1007/s12011-018-1266-5. PMid:29468613.
World Health Organization – WHO. WHO guidelines on use of medically important antimicrobials in food-producing animals [Internet]. Geneva: WHO; 2017 [cited 2024 Jan 2]. Available from: https://www.who.int/publications/i/item/9789241550130.
Yoon KY, Byeon JH, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373(2- 3):572-5. http://doi.org/10.1016/j.scitotenv.2006.11.007.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Brazilian Journal of Veterinary Research and Animal Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal content is authorized under the Creative Commons BY-NC-SA license (summary of the license: https://
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Finance code 001 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 303750/2021-9 -
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2022/12389-9;2021/08217-5