Cobre nanoestruturado como fonte alternativa ao sulfato de cobre como melhorador de desempenho para leitões em fase de creche

Autores

  • Rafaela Nunes dos Santos Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal, Laboratório de Pesquisa em Suínos
  • Laya Kannan Silva Alves Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal, Laboratório de Pesquisa em Suínos https://orcid.org/0000-0002-9534-6121
  • Flávio de Aguiar Coelho Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal, Laboratório de Pesquisa em Suínos
  • Hebert Silveira Natural BR Feed
  • Camila Neves Lange Brazilian Nano Feed
  • Joaquim Carlos Atra Gonçalves Brazilian Nano Feed
  • Guilherme Carvalho Tremiliosi Brazilian Nano Feed
  • Allan Paul Schinckel Purdue University, College of Agriculture, Department of Animal Sciences
  • Cesar Augusto Pospissil Garbossa Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal, Laboratório de Pesquisa em Suínos

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2025.220957

Palavras-chave:

Antibióticos, Aditivos, Nanopartículas, Nutrição, Suinocultura

Resumo

Antimicrobianos são comumente utilizados na produção suinícola para melhorar o desempenho dos animais, no entanto, seu uso pode contribuir para o desenvolvimento de resistência bacteriana. Como resultado, há a necessidade de explorar novas tecnologias nutricionais que possam promover a saúde e a produtividade animal sem comprometer a resistência bacteriana. Este estudo teve como objetivo avaliar os efeitos do cobre nanoestruturado como melhorador de desempenho para leitões na fase de creche. Um total de 135 leitões com 28 dias de idade foram distribuídos em um delineamento em blocos casualizados (sexo e peso inicial) e divididos em cinco tratamentos dietéticos: controle negativo (sem melhorador de desempenho); controle positivo (inclusão de 200 mg/kg de sulfato de cobre); e três dietas com diferentes inclusões de cobre nanoestruturado (10, 20 e 30 mg/kg da dieta). Os parâmetros de ganho de peso diário (GPD), consumo de ração diário (CRD) e conversão alimentar (CA) foram usados para caracterizar o desempenho dos leitões na fase de creche. Escores fecais diários foram usados para caracterizar a prevalência de distúrbios entéricos e a análise econômica foi usada como um parâmetro para estimar a viabilidade econômica da suplementação de cobre nanoestruturado para leitões desmamados. Aos sete dias do experimento foi observado que os animais do grupo controle negativo apresentaram peso vivo superior (P<0,05) ao grupo com sulfato de cobre em 7,75%. Do dia 21 ao 42 do experimento verificou-se que os animais do grupo com sulfato de cobre apresentaram CRD superior (P<0,05) em comparação a todos os outros grupos experimentais. Para o escore fecal médio, o grupo com inclusão de 20 mg/kg de cobre nanoestruturado apresentou escore superior (P<0,05) em 13% em comparação ao grupo do sulfato de cobre, demonstrando maior incidência de diarreia. Portanto, o cobre nanoestruturado, nas doses avaliadas, não foi eficaz em melhorar o desempenho de leitões na fase de creche.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Aarestrup F. Get pigs off antibiotics. Nature. 2012;486(7404):465- 6. http://doi.org/10.1038/486465a. PMid:22739296.

Aarestrup FM, Wegener HC, Collignon P. Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev Anti Infect Ther. 2008;6(5):733-50. http://doi.org/10.1586/14787210.6.5.733. PMid:18847409.

Agga GE, Scott HM, Amachawadi RG, Nagaraja TG, Vinasco J, Bai J, Norby B, Renter DG, Dritz SS, Nelssen JL, Tokach MD. Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs. Prev Vet Med. 2014;114(3-4):231-46. http://doi.org/10.1016/j.prevetmed.2014.02.010. PMid:24655578.

Ahmed ST, Hossain ME, Kim GM, Hwang JA, Ji H, Yang CJ. Effects of resveratrol and essential oils on growth performance, immunity, digestibility and fecal microbial shedding in challenged piglets. Asian-Australas J Anim Sci. 2013;26(5):683-90. http://doi.org/10.5713/ajas.2012.12683. PMid:25049839.

Alves LKS, Gameiro AH, Schinckel AP, Garbossa CAP. Development of a swine production cost calculation model. Animals. 2022;12(17):2229. http://doi.org/10.3390/ani12172229.

Alves LKS, Geremias HR, Santos FM, Silva RMC, Raineri C, Gameiro AH, Garbossa CAP. Informativo mensal do Índice de Custo de Produção do Suíno Paulista (ICPS). São Paulo: USP; 2023. http://dx.doi.org/10.13140/RG.2.2.23320.88325.

Apić I, Stančić I, Kučević D, Apić J, D’Inca J, Zekić D. Influence of saccharomyces cerevisiae (actisaf sc 47®) as feed aditive in gestation or lactation diets on sows and nursing piglets health and performance. Arh Vet Med. 2016;9(2):39-52. http://doi.org/10.46784/e-avm.v9i2.88.

Barbosa KA, Genova JL, Pazdziora ML, Azevedo LB, Wendt GN, Rupolo PE, Rodrigues GA, Carvalho ST, Costa e Silva LF, Costa LB, Saraiva A, Carvalho PLO. Effects of combined feed additives in diets to support growth performance and intestinal health profile in nursery piglets. Livest Sci. 2022;266:105121. http://doi.org/10.1016/j.livsci.2022.105121.

Barton MD. Impact of antibiotic use in the swine industry. Curr Opin Microbiol. 2014;19(1):9-15. http://doi.org/10.1016/j.mib.2014.05.017. PMid:24959754.

Blavi L, Solà D, Monteiro A, Pérez JF, Stein HH. Inclusion of dicopper oxide instead of copper sulfate in diets for growing–finishing pigs results in greater final body weight and bone mineralization, but reduced accumulation of copper in the liver. J Anim Sci. 2021;99(6):skab127. http://doi.org/10.1093/jas/skab127. PMid:33880556.

Bogdanovic U, Lazic V, Vodnik V, Budimir M, Markovic Z, Dimitrijevic S. Copper nanoparticles with high antimicrobial activity. Mater Lett. 2014;128:75-8. http://doi.org/10.1016/j.matlet.2014.04.106.

Carnino BB, Alves LKS, Moraes EIC, Madella GS, Lange CN, Pieretti JC, Tremiliosi GC, Gonçalves JCA, Silveira H, Garbossa CAP. Harnessing silver nanoparticles to promote swine growth: a safer alternative to antibiotics. Braz J Vet Res Anim Sci. 2025;62:e220959. http://doi.org/10.11606/issn.1678-4456.bjvras.2025.220959.

Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater. 2005;17(21):5255-62. http://doi.org/10.1021/cm0505244.

Carpenter CB, Woodworth JC, DeRouchey JM, Tokach MD, Goodband RD, Dritz SS, Wu F, Rambo ZJ. Effects of increasing copper from either copper sulfate or combinations of copper sulfate and a copper–amino acid complex on finishing pig growth performance and carcass characteristics. Transl Anim Sci. 2019;3(4):1263-9. http://doi.org/10.1093/tas/txz112. PMid:32724896.

Cromwell GL. Why and how antibiotics are used in swine production. Anim Biotechnol. 2002;13(1):7-27. http://doi.org/10.1081/ABIO-120005767. PMid:12212945.

Davin R, Lagos LV, Molist F. Short communication: copper bisglycinate can partially or totally replace copper sulfate in diets with either no effects or positive effects on growth performance of weaned pigs. Anim Feed Sci Technol. 2022;285:115223. http://doi.org/10.1016/j.anifeedsci.2022.115223.

Diana A, Boyle LA, Leonard FC, Carroll C, Sheehan E, Murphy D, Manzanilla EG. Removing prophylactic antibiotics from pig feed: how does it affect their performance and health? BMC Vet Res. 2019;15(1):67. http://doi.org/10.1186/s12917-019-1808-x. PMid:30808361.

Dębski B. Supplementation of pigs diet with zinc and copper as alternative to conventional antimicrobials. Pol J Vet Sci. 2016;19(4):917-24. http://doi.org/10.1515/pjvs-2016-0113. PMid:28092617.

Dove CR. The effect of copper level on nutrient utilization of weanling pigs. J Anim Sci. 1995;73(1):166-71. http://doi.org/10.2527/1995.731166x. PMid:7601730.

Espinosa CD, Fry RS, Usry JL, Stein HH. Copper hydroxychloride improves growth performance and reduces diarrhea frequency of weanling pigs fed a corn–soybean meal diet but does not change apparent total tract digestibility of energy and acid hydrolyzed ether extract. J Anim Sci. 2017;95(12):5447-54. http://doi.org/10.2527/jas2017.1702. PMid:29293761.

Forouzandeh A, Blavi L, Pérez JF, D’Angelo M, González-Solé F, Monteiro A, Stein HH, Solà-Oriol D. How copper can impact pig growth: comparing the effect of copper sulfate and monovalent copper oxide on oxidative status, inflammation, gene abundance, and microbial modulation as potential mechanisms of action. J Anim Sci. 2022;100(9):skac224. http://doi.org/10.1093/jas/skac224. PMid:35723874.

Gao J, Yin J, Xu K, Li T, Yin Y. What is the impact of diet on nutritional diarrhea associated with gut microbiota in weaning piglets: a system review. BioMed Res Int. 2019;2019:6916189. http://doi.org/10.1155/2019/6916189. PMid:31976326.

Girard M, Bee G. Invited review: tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal. 2020;14(1):95-107. http://doi.org/10.1017/S1751731119002143. PMid:31571564.

Grecco HAT, Amorim AB, Saleh MAD, Tse MLP, Telles FG, Miassi GM, Pimenta GM, Berto DA. Evaluation of growth performance and gastro-intestinal parameters on the response of weaned piglets to dietary organic acids. An Acad Bras Cienc. 2018;90(1):401-14. http://doi.org/10.1590/0001-3765201820160057. PMid:29466480.

Hill EK, Li J. Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol. 2017;8(1):26. http://doi.org/10.1186/s40104-017-0157-5. PMid:28316783.

Hill GM, Shannon MC. Copper and Zinc nutritional issues for agricultural animal production. Biol Trace Elem Res. 2019;188(1):148-59. http://doi.org/10.1007/s12011-018-1578-5. PMid:30612303.

Hu Q, Liu C, Zhang D, Wang R, Qin L, Xu Q, Che L, Gao F. Effects of low-dose antibiotics on gut immunity and antibiotic resistomes in weaned piglets. Front Immunol. 2020;11:903. http://doi.org/10.3389/fimmu.2020.00903. PMid:32655541.

Jacela JY, DeRouchey JM, Tokach MD, Goodband RD, Nelssen JL, Renter DG, Dritz SS. Feed additives for swine: fact sheets-high dietary levels of copper and zinc for young pigs, and phytase. J Swine Health Prod. 2010;18(2):87-91. http://doi.org/10.54846/jshap/624d.

Jiang XR, Awati A, Agazzi A, Vitari F, Ferrari A, Bento H, Crestani M, Domeneghini C, Bontempo V. Effects of a blend of essential oils and an enzyme combination on nutrient digestibility, ileum histology and expression of inflammatory mediators in weaned piglets. Animal. 2015;9(3):417-26. http://doi.org/10.1017/S1751731114002444. PMid:25275341.

Karasova D, Crhanova M, Babak V, Jerabek M, Brzobohaty L, Matesova Z, Rychlik I. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea – a field study. Res Vet Sci. 2021;135:59-65. http://doi.org/10.1016/j.rvsc.2020.12.022. PMid:33444908.

Kiros TG, Derakhshani H, Pinloche E, D’Inca R, Marshall J, Auclair E, Khafipour E, Van Kessel A. Effect of live yeast saccharomyces cerevisiae (actisaf sc 47) supplementation on the performance and hindgut microbiota composition of weanling pigs. Sci Rep. 2018;8(1):5315. http://doi.org/10.1038/s41598-018-23373-8. PMid:29593306.

Marinho MC, Lordelo MM, Cunha LF, Freire JPB. Microbial activity in the gut of piglets: I. Effect of prebiotic and probiotic supplementation. Livest Sci. 2007;108(1-3):236-9. http://doi.org/10.1016/j.livsci.2007.01.081.

Markowiak P, Śliżewska K. The role of probiotics, prebiotics and symbiotic in animal nutrition. Gut Pathog. 2018;10(21):21. http://doi.org/10.1186/s13099-018-0250-0. PMid:29930711.

Moreira V, Garbossa CAP, Guimarães EBB, Hirai WH, Cruz TA, Alves LKS, Araújo LF. Evaluation of a phytogenic compound with minerals as a possible alternative to ractopamine for finishing pigs. Animals. 2022;12(18):2311. http://doi.org/10.3390/ani12182311. PMid:36139172.

National Research Council – NRC. Nutrient requirements of swine. Washington, D.C.: NRC; 2012. Pedersen KS, Toft N. Intra – and inter-observer agreement when using a descriptive classification scale for clinical assessment of faecal consistency in growing pigs. Prev Vet Med. 2011;98(4):288-91. http://doi.org/10.1016/j.prevetmed.2010.11.016. PMid:21185096.

Pérez VG, Waguespack AM, Bidner TD, Southern LL, Fakler TM, Ward TL, Steidinger M, Pettigrew JE. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J Anim Sci. 2011;89(2):414-25. http://doi.org/10.2527/jas.2010-2839. PMid:20935138.

Pouillart PR, Dépeint F, Abdelnour A, Deremaux L, Vincent O, Mazière JC, Madec JY, Chatelain D, Younes H, Wils D, Saniez MH, Dupas JL. Nutriose, a prebiotic low-digestible carbohydrate, stimulates gut mucosal immunity and prevents tnbs-induced colitis in piglets. Inflamm Bowel Dis. 2010;16(5):783-94. http://doi.org/10.1002/ibd.21130. PMid:19998458.

Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol. 2018;44:421-30. http://doi.org/10.1016/j.jddst.2018.01.009.

Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett. 2012;71(15):114-6. http://doi.org/10.1016/j.matlet.2011.12.055.

SAS Institute Inc. SAS® user’s guide, version 8.1. Cary: SAS Institute Inc.; 2009.

Scott A, Vadalasetty KP, Chwalibog A, Sawosz E. Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnol Rev. 2018;7(1):69-93. http://doi.org/10.1515/ntrev-2017-0159.

Tsiloyiannis VK, Kyriakis SC, Vlemmas J, Sarris K. The effects of organic acids on the control of porcine postweaning diarrhea. Res Vet Sci. 2001;70(3):287-93. http://doi.org/10.1053/rvsc.2001.0476. PMid:11676629.

Usman MS, Zowalaty MEE, Shameli K, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013;8:4467-79.

Vangroenweghe F, Poulsen K, Thas O. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Manag. 2021;7(1):8. http://doi.org/10.1186/s40813-021-00191-5. PMid:33431048.

Villagómez-Estrada S, Pérez JF, Darwich L, Vidal A, van Kuijk S, Melo-Dúran D, Solà-Oriol D. Effects of copper and zinc sources and inclusion levels of copper on weanling pig performance and intestinal microbiota. J Anim Sci. 2020;98(5):skaa117. http://doi.org/10.1093/jas/skaa117. PMid:32277238.

Wang HF, Gao K, Wang C, Zhang WM, Liu JX. Effects of feeding bamboo vinegar and acidifier as an antibiotic substitute on the growth performance and intestinal bacterial communities of weaned piglets. Acta Agric Scand A Anim Sci. 2013;63(3):143-50. http://doi.org/10.1080/09064702.2013.845244.

Wang C, Zhang L, Ying Z, He J, Zhou L, Zhang L, Zhong X, Wang T. Effects of dietary Zinc Oxide Nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biol Trace Elem Res. 2018;185(2):364-74. http://doi.org/10.1007/s12011-018-1266-5. PMid:29468613.

World Health Organization – WHO. WHO guidelines on use of medically important antimicrobials in food-producing animals [Internet]. Geneva: WHO; 2017 [cited 2024 Jan 2]. Available from: https://www.who.int/publications/i/item/9789241550130.

Yoon KY, Byeon JH, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373(2- 3):572-5. http://doi.org/10.1016/j.scitotenv.2006.11.007.

Downloads

Publicado

2025-06-09

Edição

Seção

ARTIGO COMPLETO

Dados de financiamento

Como Citar

1.
Santos RN dos, Alves LKS, Coelho F de A, Silveira H, Lange CN, Gonçalves JCA, et al. Cobre nanoestruturado como fonte alternativa ao sulfato de cobre como melhorador de desempenho para leitões em fase de creche. Braz. J. Vet. Res. Anim. Sci. [Internet]. 9º de junho de 2025 [citado 3º de janeiro de 2026];62:e220957. Disponível em: https://revistas.usp.br/bjvras/article/view/220957