Demographic dimensions of wage disparities a stochastic frontier approach to labor market in São Paulo City (Brazil)

Authors

DOI:

https://doi.org/10.1590/1980-53575511lpad

Keywords:

Demography, Stochastic frontier, Underpayment

Abstract

This study investigates wage disparities for 6.34 million workers from São Paulo city (Brazil) during the years 2018 to 2020 using Stochastic Frontier methods to estimate changes in the underpayment levels across demographic dimensions. The results indicate that closing the underpayment gap has the potential to yield an average salary increase of 1.12 times, with a range spanning from 1.02 to 4.82 times within the sample. Additionally, the results underscore lower levels of underpayment among white and male workers, while migrant workers and those with reported disabilities tend to experience higher levels of underpayment. Further-more, the study unveils a trend of decreasing potential wages over time, marked by a sharp -19.34% reduction in 2020, primarily attributed to the impact of the COVID-19 outbreak. Simultaneously, there is a notable reduction in the average underpayment, with a substantial decline occurring in 2019. In conclusion, this research advances the existing literature by uti-lizing Stochastic Frontier models to assess underpayment and provides valuable insights into the intricate dynamics of wage disparities — a critical issue that plays a pivotal role in fostering socioeconomic development.

Downloads

Download data is not yet available.

References

Cohen, P. N. and M. L. Huffman. 2007. Working for the woman? Female managers and the gender wage gap. American Sociological Review 72(5), 681–704.

Corbi, R. B., R. Narita, R. Ferreira, and D. Souza. 2022. Job Search and Employment: Evidence from a Labor Reform in Brazil. 2022. SSRN. Available at SSRN: https://ssrn.com/abstract=4121304 or http://dx.doi.org/10.2139/ssrn.4121304.

Costa Dias, M., R. Joyce, and F. Parodi. 2020. The gender pay gap in the UK: children and experience in work. Oxford Review of Economic Policy 36(4), 855–881.

Da Silva Filho, L. A. 2020. Migração e inserção socioeconômica nos municípios brasileiros-2000/2010. Economia e Desenvolvimento 32.

Dobner, L. O., R. R. Gonçalves, and R. M. Pereira. 2022. Análise setorial dos diferenciais de rendimen- tos entre os gêneros no Rio Grande do Sul: Uma abordagem paramétrica e não-paramétrica. Revista Brasileira de Estudos Regionais e Urbanos 16(2), 214–238.

Firpo, S. P., N. M. Fortin, and T. Lemieux. 2018. Decomposing wage distributions using recentered influence function regressions. Econometrics 6(2), 28.

Freguglia, R. and T. S. Procópio. 2013. Efeitos da mudança de emprego e da migração interestadual sobre os salários no Brasil formal: evidências a partir de dados em painel. Pesquisa e Planejamento Econômico (PPE) 42(2), 255–278. Available at: http://repositorio.ipea.gov.br/handle/11058/3331.

Giuberti, A. C. and N. Menezes-Filho. 2005. Discriminação de rendimentos por gênero: uma com- paração entre o Brasil e os Estados Unidos. Economia Aplicada 9(3), 369–384.

Goldin, C. 1995. The U-Shaped Female Labor Force Function in Economic Development and Economic History. In Schultz TP Investment in Women’s Human Capital and Economic Development, pp. 61–90. University of Chicago Press.

Gouvêa, C. P. 2022. Governança Corporativa e Diversidade Racial no Brasil: um Retrato das Companhias Abertas. Available at SSRN 4077326.

Han, J. and M. Budig. 2019. Gender Pay Gap. Oxford University Press.

Hofler, R. A. and K. J. Murphy. 1992. Underpaid and Overworked: Measuring the effect of imperfect information on wages. Economic Inquiry, 511–529.

Hofler, R. A. and K. J. Murphy. 1994. Estimating Reservation Wages of Employed Workers Using a Stochastic Frontier. Southern Economic Journal 60(4), 961–976.

IBGE. 2023. Com taxa de 8,8%, desemprego cresce no primeiro trimestre de 2023. Instituto Brasileiro de Geografia e Estatística. https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de- noticias/noticias/36780-com-taxa-de-8-8-desemprego-cresce-no-primeiro-trimestre-de-2023.

Kleinjans, K. J., K. F. Krassel, and A. Dukes. 2017. Occupational prestige and the gender wage gap. Kyklos 70(4), 565–593. https://doi.org/10.1111/kykl.12149.

Kumbhakar, S. and C. A. K. Lovell. 2000. Stochastic Frontier Analysis. Cambridge: Cambridge University Press.

Kumbhakar, S., H.-J. Wang, and A. Horncastle. 2015. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata. Cambridge: Cambridge University Press.

Kumbhakar, S. C. and H.-P. Lai. 2022. Recent Advances in the Panel Stochastic Frontier Models: Heterogeneity, Endogeneity and Dependence. International Journal of Empirical Economics 01(01).

Lagos, L. 2019. Labor market institutions and the composition of firm compensation: Evidence from brazilian collective bargaining. Job Market Paper.

Lameiras, M. A. P. and L. S. Vasconcelos. 2018. A evolução da população ocupada com nível superior no mercado de trabalho. Carta de Conjuntura IPEA 41.

Law, P.-L. and Y. Peng. 2008. Mobile networks: Migrant workers in southern China. Handbook of Mobile Communication Studies, 55–64.

Madalozzo, R. 2010. Occupational segregation and the gender wage gap in Brazil: an empirical analysis. Economia Aplicada 14(2), 147–168.

Magnusson, C. 2016. The gender wage gap in highly prestigious occupations: a case study of Swedish medical doctors. Work, employment and society 30(1), 40–58.

Meireles, D. C. and J. L. M. da Silva. 2019. Diferenciais de rendimentos por gênero e raça no mercado de trabalho brasileiro. Revista Gênero 20(1), 73–5.

Mincer, J. 1975. Education, Experience, and the Distribution of Earnings and Employment: An Overview. In: Education, Income, and Human Behavior, pp. 71–94. NBER - National Bureau of Eco- nomic Research.

Montenegro, A. V., A. C. R. Tupinambá, R. L. Feitosa, R. M. D. Ávila, R. L. Lima, and J. L. Palhano. 2012.

Programa RINEPE e IMBA: promoção da qualidade de vida do trabalhador PcD em empresas cearenses.

OECD. 2022. Education at a Glance 2022. https://www.oecd.org/education/education-at-a-glance/.

Ogloblin, C. and G. Brock. 2005. Wage determination in urban Russia: Underpayment and the gender differential. Economic Systems 29(3), 325–343.

O’Reilly, J., M. Smith, S. Deakin, and B. Burchell. 2015. Equal Pay as a Moving Target: International perspectives on forty-years of addressing the gender pay gap. Cambridge Journal of Economics 39(2), 299–317.

Pacheco, J. P., G. M. Mendes, and G. M. Moura. 2023. Análise da Diferença Salarial entre Homens e Mulheres no Paraná em 2012 e 2019. Revista Brasileira de Estudos Regionais e Urbanos 16(4), 591–615.

Pager, D. and H. Shepherd. 2008. The Sociology of Discrimination: Racial Discrimination in Employment, Housing, Credit, and Consumer Markets. Annual Review of Sociology.

Pecora, A. R. and N. Menezes-Filho. 2014. O papel da oferta e da demanda por qualificação na evolução do diferencial de salários por nível educacional no Brasil. Estudos Econômicos (São Paulo) 44(2), 205–240.

RAIS. 2023. Ministério do Trabalho e Emprego. Relação Anual de Informações Sociais. Available at: http://www.rais.gov.br/sitio/index.jsf.

Ramos, L. and M. L. Vieira. 2001. Determinantes da desigualdade de rendimentos no Brasil nos anos 90: discriminação, segmentação e heterogeneidade dos trabalha-dores. IPEA Textos para Discussão Nº 803.

Silveira, L. S. and N. L. Siqueira. 2021. Segregação ocupacional e diferenciais de renda por gênero e raça no Brasil: uma análise de grupos etários. Revista Brasileira de Estudos de População.

Snipes, R. L., S. L. Oswald, and S. B. Caudill. 1998. Sex-role stereotyping, gender biases, and job selection: The use of ordinal logit in analyzing Likert scale data. Employee Responsibilities and Rights Journal 11, 81–97.

Van Ours, J. C. and L. Stoeldraijer. 2010. Age, wage and productivity. CentER Discussion Paper Series No. 2010-12.

Wang, Y. and D. Redmiles. 2019. Implicit gender biases in professional software development: An empirical study. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS), 1–10.

Wilson, G. and V. J. Roscigno. 2016. Public sector reform and racial occupational mobility. Work and Occupations 43(3), 259–293.

Winslow-Bowe, S. 2009. Husbands’ and wives’ relative earnings: Exploring variation by race, human capital, labor supply, and life stage. Journal of Family Issues 30(10), 1405–1432.

Downloads

Published

25-03-2025

Issue

Section

Articles

How to Cite

Puehler, L., & Danelon, A. F. (2025). Demographic dimensions of wage disparities a stochastic frontier approach to labor market in São Paulo City (Brazil): . Estudos Econômicos (São Paulo), 55(1), e53575511. https://doi.org/10.1590/1980-53575511lpad