Wavelets decomposition, volatility analysis and correlation for financial indexes

Authors

  • Edgard Almeida Pimentel Universidade Técnica de Lisboa. Instituto Superior Técnico
  • Juliana Fernandes da Silva Universidade Técnica de Lisboa. Instituto Superior Técnico

DOI:

https://doi.org/10.1590/S0101-41612011000200009

Keywords:

wavelets, financial time-series, correlation and volatility analysis, comovements

Abstract

Since the benefits of portfolio international diversification results appeared in financial literature, the issue of financial co-movements among different markets has been a key question. Many recent studies have approached this topic targeting a correlation investigation among financial indicators. Unfortunately, the huge majority of them focus only in the time domain, ignoring the relevant frequency domain which could differentiate long and short-run investment contribution to the energy of a time series. This paper proposes a wavelet-based volatility and correlation analysis of key financial indexes for the Brazilian, American and European markets looking for some results concerning the correlation structure between them in time and frequency domain, obtaining distinct results for long and short-run investment performance and contribution.

Downloads

Download data is not yet available.

References

[BrDe05] BROOKS, R.; DEL NEGRO, M. Country versus region effects in international stock returns, Journal of Portfolio Management, 67-72, Summer. 2005.
[BrDe06] BROOKS, R.; DEL NEGRO, M. Firm-level evidence on international stock market comovement, Review of Finance, 10, 69-98. 2006.
[Da92] DAUBECHIES, I. Ten lectures on wavelets, Volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia. 1992.
[FoRi02] FORBES, K.; Rigobon, R. No contagion, only interdependence: measuring stock market comovements, Journal of Finance, 57, 2223-2261. 2002.
[Gr68] GRUBEL, H. Internationally diversified portfolios: welfare gains and capital Flows, American Economic Review, 58, 1299-1314. 1968.
[Ha10] HAAR, A. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen, 69, 331-371. In German. 1910.
[KaSt96] KAROLYI, G. A; STULZ, R. M. Why do markets move together? An investigation of U.S.-Japan stock return comovements, Journal of Finance, 51, 951-986. 1996.
[Ki94] KING, M.; SENTANA, E.; SUSHIL, W. Volatility and links between national stock markets, Econometrica, 62, 668-675. 1994.
[LeSa70] LEVY, H.; SARNAT, M. International diversification of investment portfolios, American Economic Review, 60, 668-675. 1970.
[Li94] LIN, W.-L.; ENGLE, R.; ITO, T. Do bulls and bears move across borders? International transmission of stock returns and volatility, Review of Financial Studies, 7, 507-538. 1994.
[LoSo95] LONGIN, F.; SOLNIK, B. Is the correlation of international equity returns constant: 1960-1990, Journal of International Money and Finance, 14, 3-26. 1995.
[LoSo01] LONGIN, F.; SOLNIK, B. Extreme correlation of international equity markets, Journal of Finance, 56, 649-676. 2001.
[Mo99] MORETTIN, P. A. Ondas e ondaletas, da análise de Fourier à análise de ondaletas. São Paulo. Edusp. 1999.
[Pe83] PERCIVAL, D. B. The statistics of long memory processes. Ph.D. thesis, Department of Statistics, University of Washington. 1983.
[Pe92] PERCIVAL, D. B. Simulating Gaussian random processes with specified spectra. Computing Science and Statistics, 24, 534-538. 1992.
[Pe93] PERCIVAL, D. B. Three curious properties of the sample variance and autocovariance for stationary processes with unknown mean. The American Statistician, 47, 274-276. 1993.
[Pe94] PERCIVAL, D. B. Spectral analysis of univariate and bivariate time series. In J. L. Stanford and S. B. Vardeman , editors, Statistical Methods for Physical Science, Volume 28 of Methods of Experimental Physics, 313-348. Academic press, Inc., Boston. 1994.
[Pe95] PERCIVAL, D. B. On estimation of the wavelet variance. Biometrika, 82, 619-631. 1995.
[PeGu94] PERCIVAL, D. B.; GUTTORP, P. Long-memory processes, the Allan variance and wavelets. In E. FoufoulaOUFOULA- and P. KumarUMAR, editors, Wavelets in Geophysics, Volume 4 of Wavelet Analysis and Its Applications, 325-344. Academic Press, Inc, San Diego. 1994.
[PeMo97] PERCIVAL, D. B. and MOFJELD, H. O. Analysis of subtidal coastal sea level fluctuations using wavelets. Journal of the American Statistical Association, 92, 868-880. 1997.
[PeWa93] PERCIVAL, D. B.; WALDEN, A. T. Spectral analysis for physical applications: multitaper and conventional univariate techniques. Cambridge University Press, Cambridge, England. 1993.
[PeWa00] PERCIVAL, D. B.; WALDEN, A. T. Wavelet methods for time series analysis. Cambridge University Press, Cambridge. 2000.
[RuNu09] RUA, A.; NUNES, L. C. International comovement of stock market returns: a wavelet analysis, Journal of Empirical Finance. 2009.

Published

30-06-2011

Issue

Section

Não definida

How to Cite

Pimentel, E. A., & Silva, J. F. da. (2011). Wavelets decomposition, volatility analysis and correlation for financial indexes. Estudos Econômicos (São Paulo), 41(2), 441-462. https://doi.org/10.1590/S0101-41612011000200009