Um procedimento para prever recessões no Brasil a partir de indicadores antecedentes

Autores

  • Liana Bohn Universidade Federal de Santa Catarina
  • Newton Paulo Bueno Universidade Federal de Viçosa

DOI:

https://doi.org/10.1590/0101-4161201545115lbn

Palavras-chave:

Eventos Extremos, Previsão, Análise Fractal, Análise Discriminante.

Resumo

O objetivo desse artigo é testar, para o Brasil, uma nova abordagem de previsão que vem sendo proposta por autores oriundos de outros campos de pesquisa, como a física, e que pode ser útil para prever eventos extremos também na economia. O artigo se propõe a tentar detectar períodos de grande aumento das taxas de desemprego no Brasil utilizando duas linhas metodológicas. Com a série de desemprego (de 1985 a 2012) suavizada a partir de splines, visa-se reconhecer, via análise fractal, indícios de uma mudança em sua tendência, a partir do desempenho passado. Utilizando a metodologia de análise discriminante, procurou-se identificar as séries que apresentam co-movimento com a série do desemprego. Concluiu-se que períodos de crescimento do desemprego são, em geral, precedidos em cerca de um ano por melhorias nas relações de troca, aumento das importações e queda dos salários mínimos reais em PPC.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

BRAGA, A. C. S. Curvas ROC: aspectos funcionais e aplicações. 2000. 221 f. Tese (Doutorado em

Engenharia de Produção e Sistemas) – Universidade do Minho, Braga – Portugal, 2000.

BUCHANAN, M. What physics, meteorology, and the natural sciences can teach us about economics. Ed. Bloomsbury (Kindle Edition), 2013.

CABALLERO, R. Macroeconomic after the crisis: time to deal with the pretense-of-knowledge syndrome. Journal of Economic Perspectives, v. 24, n.4, p. 85-102, 2010.

CARVALHO, F. J. C.; HERMANNY, F. P. Ciclos e previsão cíclica: o debate teórico e um modelo de

indicadores antecedentes para a economia brasileira. Análise Econômica, Porto Alegre, Ano 21, n. 39, Mar./2003.

CORRAR, L. J.; PAULO, E. FILHO, J. M. D. Análise multivariada para os cursos de Administração,

Ciências Contábeis e Economia. São Paulo: Atlas, 2007.

DAKOS, V.; SCHEFFER, M.; VAN NES, E.H.; BROVKIN, V.; PETOUKHOV, V.; HELD, H. Slowing

down as an early warning signal for abrupt climate change. PNAS, v. 105, n. 38, p. 14308–14312, Set. 2008.

FAWCETT, T. An introduction to ROC analysis. Pattern Recognition Letters, v. 27, p. 861– 874, 2006.

GLERIA, I.; MATSUSHITA, R.; SILVA, S. Sistemas complexos, criticalidade e leis de potência. Revista Brasileira de Ensino de Física, v. 26, n.2, p. 99–108, 2004.

GOUVÊA, M.A.; FARINA, M.C.; VARELA, P.S. Avaliação de indicadores socioeconômicos de

municípios paulistas com o uso da análise discriminante. Análise, Porto Alegre, v. 18, n. 1, p.

–97, Jan./Jun. 2007.

GUIMARÃES, A.; MOREIRA, T.B.S. Previsão de Insolvência: um modelo baseado em índices contábeis com utilização da análise discriminante. Revista de Economia Contemporânea, Rio de Janeiro, v. 12, n. 1, p. 151–178, Jan./Abr. 2008.

HAIR, J. F.; ANDERSON, R.E; TATHAM, R.L.; BLACK, W.C. Análise Multivariada de Dados. 5.

Ed. Porto Alegre: Bookman, 2005.

HAIR, J. F.; BLACK, W.C.; BABIN, B.J.; ANDERSON, R.E. Multivariate data analysis. 7 Ed. Nova

Jersey: Prentice Hall, 2009.

HAUSMANN, R.; PRITCHETT, L.; RODRIK, D. Growth Accelerations. Journal of Economic Growth,

v. 10, p. 303-329, 2005.

HSIEH, D.; FUNG, W. The risk in hedge fund strategies: theory and evidence from trend followers. Review of Financial Studies, v. 14, p. 313-341, 2001.

IVES, A. R. Measuring resilience in stochastic-systems. Ecological Monograph, v. 65, p. 217–233, 1995.

KANTELHARDT, J.W.; ZSCHIEGNER, S.A.; KOSCIENLNY-BUNDE, E.; BUNDE, A.; HAVLIN,

S.; STANLEY, H.E. Multifractal detrended fluctuation analysis of nonstationary time series.

Physica, v. 316, p.87-114, 2002.

KEILIS-BOROK, V.; STOCK, J.H.; SOLOVIEV, A.; MICKALEV, P. Pre-recession pattern of six

economic indicators in the USA. Journal of Forecasting, v. 19, p. 65–80, 2000.

KEILIS-BOROK, V.I.; SOLOVIEV, A.; ALLÈGRE, C.B.; SOBOLEVSKII, A.N.; INTRILIGATOR,

M.D. Patterns of macroeconomic indicators preceding the unemployment rise in Western Europe and the USA. Pattern Recognition, v. 38, p. 423–435, 2005.

KEILIS-BOROK, V.; SOLOVIEV, A.; INTRILIGATOR, M.D.; WINBERG, F.E. Pattern of Macroeconomic

Indicators Preceding the End of an American Economic Recession. Pattern Recognition, 2008.

KEILIS-BOROK, V.; GABRIELOV, A.; SOLOVIEV, A. Geo-complexity and Earthquake Prediction.

In: MEYERS, R.A. (Org.) Encyclopedia of Complexity and Systems Science. Nova York: Springer,

KEILIS-BOROK, V.; SOLOVIEV, A.; LICHTMAN, A. Predictability of extreme events in socio-

-economic and political complex systems. In: Meyers, R. (ed.) Complex systems in finance and

econometrics – selected entries from the encyclopedia of complexity and systems science. New York: Springer, 2011.

KOSSOBOKOV, V.G.; SOLOVIEV, A. A. Prediction of extreme events: Fundamentals and prerequisites of verification. Russian Journal of Earth Sciences, v. 10, 2008.

KRISTOUFEK, L. Local scaling properties and market turning points at Prague stock exchange. Acta Physica Polonica B, v. 41, n. 6, p. 1223–1236, 2010.

KRUGMAN, P. How did economists get it so wrong? The New York Times, 02 de setembro de 2009.

LIM, K.P.; BROOKS, R. The evolution of stock Market efficiency over time: a survey of the empirical literature. Journal of Economic Surveys, v. 25, p. 69-108, 2011.

MANDELBROT, B.; HUDSON, R.L. The (mis) behavior of markets: a fractal view of financial turbulence. Nova York: Basic Books, 2004.

MARSH, L.C.; CORMIER, D.R. Spline Regression Models. Londres: Sage Publications Inc, 2001.

MAYER-SCHONBERGER, V.; CUKIER, K. Big data: a revolution that will transform how we live,

work and think. Ed. John Murray (Kindle Edition), 2013.

MILLER, J.; PAGE, S. (2007) Complex adaptive systems, an introduction to computational models of social life. Princeton e Oxford: Princeton University Press, 2007.

RACINE, R. Estimating the Hurst expoent. 2011. 30f. Tese – Swiss Federal Institute of Technology Zurich, Zurich, 2011.

REINHART, C.M.; ROGOFF, K.S. This time is different. Nova Jersey: Princeton University Press, 2009.

RIBEIRO, S.M.S. Modelos de previsão de incumprimento fiscal através de informação financeira: estudo das empresas de mobiliário de madeira. 2011. 84 f. Dissertação (Mestrado em Finanças e Fiscalidade) – Universidade do Porto, Porto, 2011.

SCHEFFER, M.; BASCOMPTE, J.; BROCK, W.A.; BROVKIN, V.; CARPENTER, S.R.; DAKOS,

V.; HELD, H.; VAN NES, E.H.; RIETKERK, M.; SUGIHARA, G.. Early-warning signals for

critical transitions. Nature, v. 461, n. 3, Set./2009.

SCHEFFER, M. Foreseeing tipping points. Nature – News & Views Research, v. 467, 411– 412, Set./2010.

SCHUMAKER, L. Spline Functions: Basic Theory. Nova York: Wiley, 1981.

SELAU, L.P.R. Construção de modelos de previsão de risco de crédito. 2008. 129 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2008.

SMITH, R. Is High-Frequency Trading Inducing Changes in Market Microstructure and Dynamics? Disponível em <http://ssrn.com/abstract=1632077> or <http://dx.doi.org/10.2139 /

ssrn.1632077>.2010.

STOCK, J.H.; WATSON, M. W. Business Cycles, Indicators and Forecasting. In: STOCK, J.H.; WATSON, M. W. (Ed.) A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience. Chicago: The National Bureau of Economic Research, 1991. Disponível em <http://www.nber.org/chapters/c7190.pdf>.

STOCK, J.H.; WATSON, M. W. Business Cycle Fluctuations in U.S. Macroeconomic Time Series.

NBER Working Paper Series, n. 6528, Abr. 1998.

TALEB, N.N. A lógica do cisne negro – O impacto do altamente improvável. São Paulo, Best Seller, 2008.

ZALIAPIN, I.; KEILIS-BOROK, V.; AXEN, G. Premonitory spreading of seismicity over the fault

network in S. California: precursos Accord. Journal of Geophys, v. 107, n. 2221, 2002.

ZARMOWITZ, V.; MOORE, G. H. Sequential Signals of Recession and Recovery. In: MOORE, G.

H. The Business Cycles, Inflation, and Forecasting. Chicago: The National Bureau of Economic

Research, 1983. Disponível em .

Downloads

Publicado

30-03-2015

Edição

Seção

Artigo

Como Citar

Bohn, L., & Bueno, N. P. (2015). Um procedimento para prever recessões no Brasil a partir de indicadores antecedentes. Estudos Econômicos (São Paulo), 45(1), 215-247. https://doi.org/10.1590/0101-4161201545115lbn