Exploring Spatiotemporal Landscape Dynamics in Brazil (2002–2020): a Conservation Perspective

Authors

DOI:

https://doi.org/10.11606/issn.2179-0892.geousp.2024.230696

Keywords:

Landscapes in Brazil, spatiotemporal dynamics, vegetation phenology, conservation, agriculture

Abstract

This study aims to identify, quantify and delineate landscape units in Brazil based on the dynamics of vegetation cover maintenance and transformation on subannual to decadal time scales. Bimonthly satellite images (2002-2020) were analyzed to characterize and quantify the spatiotemporal phenology of vegetation across Brazil and neighboring territories. The analysis identified two main landscape types: one with temporal stability, reflecting ancient natural processes in biomes such as the Amazon and Pantanal, and another with temporal instability, characterized by annual and biennial cycles in agricultural and pastoral areas in the Caatinga, Cerrado, and Atlantic Forest biomes. Phenological variations are influenced by seasonal precipitation and temperature, as well as fragmentation resulting from human activities such as agriculture and deforestation. The mapping reveals spatial discontinuities that range from protected territories to intensive agriculture, emphasizing the need to strengthen conservation strategies in protected areas, particularly in the Pantanal, Caatinga, Cerrado, and Atlantic Forest.

Downloads

Download data is not yet available.

Author Biographies

  • Ricardo Sartorello, Universidade Federal de São Paulo

    é Professor de Geografia Física no curso de Geografia do Instituto das Cidades da Universidade Federal de São Paulo - Unifesp Campus Zona Leste (2023). Possui graduação em Geografia (2005), mestrado (2010) e doutorado em Geografia Física (2014) pela Universidade de São Paulo. Em 2013, realizou parte do doutorado na Columbia University (NY/USA). Atua nas áreas: Biogeografia, Sensoriamento Remoto, Cartografia, Planejamento Ambiental e Paisagem.

  • Edson Alves Filho, Universidade de São Paulo. Programa de Pós-Graduação em Geografia Física

    Geógrafo formado pela Universidade de São Paulo (2009). Doutor em Ciências pelo Programa de Pós-Graduação em Geografia Física da Universidade de São Paulo (2024). Pesquisa Avaliação Ambiental Urbana, Geoindicadores de Impactos do Meio Físico, Modelagem de Nichos Ecológicos e Análise Espaço-Temporal da Cobertura Vegetal e Uso da Terra.

  • Christopher Small, Columbia University. Lamont-Doherth Earth Observatory
    Professor da Universidade de Columbia, Christopher Small é um geofísico observacional. Ele vive em Nova York desde 1994 e visita o Brasil sempre que possível.

References

AB'SABER, Aziz Nacib. Os domínios de natureza no Brasil: potencialidades paisagísticas. São Paulo: Ateliê Editorial, 2003.

ANDRADE-LIMA, D.; BIGARELLA, J. J. Paleoenvironmental changes in Brazil. In: G. T. Prance (Ed.), Biological Diversification in the tropics. pp 27-40. Columbia University Press, 1982.

ARAÚJO, S. M. V. G. Origem e principais elementos da legislação de proteção à biodiversidade no Brasil. In: Conservação da Biodiversidade, Legislação e Políticas Públicas. Brasília: Câmara dos Deputados, 2011.

BEHLING, H. Late Quaternary vegetation, climate and fire history in the Araucaria forest and campos region from Serra Campos Gerais (Paraná), S Brazil. Review of Paleobotany and Paleobiology, 97(1-2), 109-121, 1997.

BERTRAND, G. Paisagem e Geografia Física Global: esboço metodológico. Revista do Instituto de Geografia. São Paulo, 1972.

BOARDMAN, J. W. Inversion of imaging spectrometry data using singular value decomposition. In IGARSS'89, 12th Canadian Symposium on Remote Sensing, 2069-72. Vancouver, B.C, 1989.

CARNAVAL, A. C.; MORITZ, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography, 35(7), 1187-1201, 2008.

DEAN, Warren. A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. 1. ed. São Paulo: Cia. das Letras, 2004.

DELPOUX, M. Ecossistema e paisagem. Revista Métodos em Questão. IGEOG/USP, 1974.

FAHRIG, L. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics, v. 34, p. 487-515, 2003.

FOLEY, J. A. et al. Global consequences of land use. Science, v. 309, n. 5734, p. 570–574, 2005.

FLENLEY, J. R. 1998. Tropical forests under the climates of the last 30,000 years. Climatic Change, 39(2), 177-197.

GLOBAL FOREST WATCH. Global Forest Watch. Disponível em: https://www.globalforestwatch.org. Acesso em: 17 set. 2024.

HAFFER, J. Speciation in Amazonian forest birds. Science, 165(3889), 131-137, 1969.

HAWKINS, E. et al. Unprecedented changes in global temperature over the past 2,000 years. Nature Climate Change, v. 13, n. 2, p. 131-138, 2023.

HOORN, C., et. al. Amazonia Through Time: Andean Uplift, Climate Change, landscape Evolution, and Biodiversity. Science, 330(6006), 927-931, 2010.

HUETE, A., K., et. al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices', Remote Sensing of Environment, 83: 195-213, 2002.

HUETE, A., C. JUSTICE, LEEUWEN, W. Van. MODIS Vegetation Index (MOD13) Algorithm Theoretical Basis Document. In, 295–309, 1999.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Pesquisa Agrícola Municipal (2023). Acesso em: https://www.ibge.gov.br/ibge-digital.html.

KAYANO, M. T.; ANDREOLI, R. V. Clima da Região Nordeste do Brasil. In: CAVALCANTI, I. F. A.; FERREIRA, N. J.; SILVA, M. G. A. J.; DIAS, M. A. F. S. (Ed.). Tempo e Clima no Brasil. São Paulo: Oficina de Textos, 2009. v. 1, p. 213-233. ISBN 9788586238925. (INPE--/). Disponível em: <http://urlib.net/ibi/J8LNKAN8RW/36G82NU>.

LEDRU, M. P., et. al. Paleoclimate changes during the last 100,000 yr from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison. Quarternary Research, 64(3), 444-450, 2005.

LORENZ, E. N. Empirical orthogonal functions and statistical weather prediction. In Statistical Forecasting Project, 48. Cambridge, MA: MIT, 1956.

MACGREGOR, G. R.; NIEUWOLT, S. Tropical Climatology: an Introduction to the Climates of Low Latitudes. John Wiley & Sons, 1998.

MARENGO, J. A.; et. al. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology. Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/joc.1863, 2009.

MARTIN, L., et. al. Mapa geológico do Quaternário Costeiro do Estado da Bahia. Governo do Estado da Bahia, Secretaria de Minas e Energia, 1980.

MAYLE, F. E; et. al. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society of London, Series B, 359(1433), 499-514.

MORLEY, R. J. Origin and Evolution of Tropical Rainforests. Wiley, 2000.

ORGANIZAÇÃO DAS NAÇÕES UNIDAS PARA ALIMENTAÇÃO E AGRICULTURA (FAO). FUNDO PARA O DESENVOLVIMENTO DE POVOS INDÍGENAS DA AMÉRICA LATINA E CARIBE (FILAC). Povos Indígenas e Comunidades Tradicionais e a governança florestal.

Disponível em: https://www.fao.org/americas/priorities/indigenas-gobernanza-bosques/es

PREISENDORFER, R.W. Principal component analysis in meteorology and oceanography (Elsevier: Amsterdam), 1988.

RIBAS VILAS, Jordi. Planificación y gestión del paisaje rural. In: BOLÓS, Maria de. Manual de ciéncia del paisaje: teoria, método y aplicaciones. Madrid: Masson, 1992.

ROSS, J. L. S.; CUNICO, C.; LOHMANN, M.; DEL PRETTE, M. E. (orgs.). Ordenamento territorial do Brasil : potencialidades naturais e vulnerabilidades sociais, Osasco, SP : Ed. dos Autores, 2022. 585 p., ISBN 978-65-00-42369-3, DOI: 10.29327/560402

ROUGEIRE, G.; BEROUTCHACHVILI, N. Geosystemes et Paysages: Bilian et Méthodes. Paris: Armand Colin, 1991. 302 p.

SALGADO-LABOURIAU, M. L. História ecológica da Terra. Ed. Edgard Blücher, 1994.

SETTLE, J. J.; DRAKE, A. Linear mixing and the estimation of ground cover proportions, International Journal of Remote Sensing, 14: 1159-77, 1933.

SHEPARD, G. E., et. al. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction. Nature Geoscience, 3, 870-875, 2010.

SILVA, L. G.; RIBEIRO, M. C.; HASUI, É.; DA COSTA, C. A.; DA CUNHA, R. G. T. Patch size, functional isolation, visibility and matrix permeability influences Neotropical primate occurrence within highly fragmented landscapes. PloS one, v. 10, n. 2, p. e0114025, 2015.

AUTOR, C. 2004. 'The Landsat ETM+ Spectral Mixing Space', Remote Sensing of Environment, 93: 1 –17.

AUTOR, C. Spatiotemporal dimensionality and time-space characterization of multitemporal imagery, Remote Sensing of Environment, 124: 793-809, 2012.

AUTOR, C., MILESI, C. Multi-scale Standardized Spectral Mixture Models, Remote Sensing of Environment, 136: 442-54, 2013.

SOUSA, D., AUTOR, C. Global cross calibration of Landsat spectral mixture models, Remote Sensing of Environment 192: 139–49, 2017.

SOUSA, D., AUTOR. Which Vegetation Index? Benchmarking Multispectral Metrics to Hyperspectral Mixture Models in Diverse Cropland, Remote Sensing, 15: 971, 2023.

TRICART, J. Ecodinâmica. Rio de Janeiro, 1977.

Published

2024-12-28

Issue

Section

Dossiê: Biogeografia - perspectivas científicas, conservação e mudanças climáticas

How to Cite

SARTORELLO, Ricardo; ALVES FILHO, Edson; SMALL, Christopher. Exploring Spatiotemporal Landscape Dynamics in Brazil (2002–2020): a Conservation Perspective. GEOUSP Espaço e Tempo (Online), São Paulo, Brasil, v. 28, n. 3, p. e230696, 2024. DOI: 10.11606/issn.2179-0892.geousp.2024.230696. Disponível em: https://revistas.usp.br/geousp/article/view/230696.. Acesso em: 4 jan. 2026.