Evaluación de los principales parámetros que influyen en la conectividad de sedimentos basados en modelos aplicados
DOI:
https://doi.org/10.11606/issn.2179-0892.geousp.2024.196088Palabras clave:
Hidrosedimentología, índice de conectividad, parámetros hidrosedimentológicos, Métodos hidrosedimentológicosResumen
El índice de conectividad hidrosedimentológica determina el grado de posibilidad de que los sedimentos de un área determinada lleguen a un punto de control. Comprender la dinámica que se presenta con los sedimentos requiere el uso de variables que representen la morfología y las condiciones ambientales involucradas en el espacio y el tiempo. Esta investigación propuso el análisis de modelos, identificando las principales variables que explican la conectividad de los sedimentos y observando las influencias y frecuencias de su uso. Con base en 34 artículos específicos que tratan sobre modelos de conectividad de sedimentos, se encontró una importante representatividad del uso de modelos digitales de elevación en el 85% de los trabajos, con énfasis en las variables de pendiente, área de drenaje, además del uso del suelo. La rugosidad, a pesar de ser sumamente importante, se utilizó solo con datos tabulados, siendo así un elemento a detallar en nuevos modelos.
Descargas
Referencias
BAARTMAN, J. E. M. et al. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms, v. 38, n. 12, p. 1457–1471, 2013.
BORSELLI, L.; CASSI, P.; TORRI, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena, v. 75, n. 3, p. 268–277, 2008.
BRACKEN, L. J. et al. Concepts of hydrological connectivity: Research approaches, Pathways and future agendas. Earth-Science Reviews, v. 119, p. 17–34, 2013.
BYWATER-REYES, S.; SEGURA, C.; BLADON, K. D. Geology and geomorphology control suspended sediment yield and modulate increases following timber harvest in temperate headwater streams. Journal of Hydrology, v. 548, p. 74–83, 2017.
CALSAMIGLIA, A. et al. Changes in soil quality and hydrological connectivity caused by the abandonment of terraces in a Mediterranean burned catchment. Forests, v. 8, n. 9, p. 1–20, 2017.
CARVALHO, N. DE O. Hidrossedimentologia Prática. 2a ed. Rio de Janeiro: Interciência, Editora, 2008.
CAVALLI, M. et al. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, v. 188, p. 31–41, 2013.
CISLAGHI, A.; BISCHETTI, G. B. Source areas, connectivity, and delivery rate of sediments in mountainous-forested hillslopes: A probabilistic approach. Science of the Total Environment, v. 652, p. 1168–1186, 2019.
COULTHARD, T. J.; VAN DE WIEL, M. J. Modelling long term basin scale sediment connectivity, driven by spatial land use changes. Geomorphology, v. 277, p. 265–281, 2017.
CROKE, J.; FRYIRS, K.; THOMPSON, C. Channel-floodplain connectivity during an extreme flood event: Implications for sediment erosion, deposition, and delivery. Earth Surface Processes and Landforms, v. 38, n. 12, p. 1444–1456, 2013.
DE WALQUE, B. et al. Artificial surfaces characteristics and sediment connectivity explain muddy flood hazard in Wallonia. Catena, v. 158, n. April, p. 89–101, 2017.
DI STEFANO, C.; FERRO, V. Assessing sediment connectivity in dendritic and parallel calanchi systems. Catena, v. 172, n. January 2018, p. 647–654, 2019.
DUVERT, C. et al. Baseflow control on sediment flux connectivity: Insights from a nested catchment study in Central Mexico. Elsevier, v. 87, p. 129–140, 2011.
ELSEVIER. Mendeley Ltd, 2020. Disponível em: <https://www.mendeley.com/reference-management/mendeley-desktop>
FRESSARD, M.; COSSART, E. A graph theory tool for assessing structural sediment connectivity: Development and application in the Mercurey vineyards (France). Science of the Total Environment, v. 651, p. 2566–2584, 2019.
FRYIRS, K. A. et al. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, v. 70, n. 1, p. 49–67, 2007.
GRAN, K. B.; CZUBA, J. A. Sediment pulse evolution and the role of network structure. Geomorphology, v. 277, p. 17–30, 2017.
GRAUSO, S.; PASANISI, F.; TEBANO, C. Assessment of a simplified connectivity index and specific sediment potential in river basins by means of geomorphometric tools. Geosciences (Switzerland), v. 8, n. 2, 2018.
KALANTARI, Z. et al. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Science of the Total Environment, v. 581–582, p. 386–398, 2017.
KINDLMANN, P.; BUREL, F. Connectivity measures: A review. Landscape Ecology, v. 23, n. 8, p. 879–890, 2008.
LISENBY, P. E.; FRYIRS, K. A. Sedimentologically significant tributaries: catchment-scale controls on sediment (dis)connectivity in the Lockyer Valley, SEQ, Australia. Earth Surface Processes and Landforms, v. 42, n. 10, p. 1493–1504, 2017.
LIU, Y.; FU, B. Assessing sedimentological connectivity using WATEM/SEDEM model in a hilly and gully watershed of the Loess Plateau, China. Ecological Indicators, v. 66, p. 259–268, 2016.
LLENA, M. et al. The effects of land use and topographic changes on sediment connectivity in mountain catchments. Science of the Total Environment, v. 660, p. 899–912, 2019.
LÓPEZ-VICENTE, M.; BEN-SALEM, N. Computing structural and functional flow and sediment connectivity with a new aggregated index: A case study in a large Mediterranean catchment. Science of the Total Environment, v. 651, p. 179–191, 2019.
LU, H.; MORAN, C. J.; PROSSER, I. P. Modelling sediment delivery ratio over the Murray Darling Basin. Environmental Modelling and Software, v. 21, n. 9, p. 1297–1308, 2006.
MAHONEY, D. T.; FOX, J. F.; AL AAMERY, N. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system. Journal of Hydrology, v. 561, p. 862–883, 2018.
MASSELINK, R. et al. Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica, v. 43, n. 1, p. 17, 2017.
MESSENZEHL, K.; HOFFMANN, T.; DIKAU, R. Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park - linking geomorphic field mapping with geomorphometric modelling. Geomorphology, v. 221, p. 215–229, 2014.
MINELLA, J. P. G.; MERTEN, G. H.; CLARKE, R. T. Método “ fingerprinting ” para identificação de fontes de sedimentos em bacia hidrográfica rural Fingerprinting method for identification of sediment sources in a rural watershed. n. 51, p. 633–638, 2009.
MISHRA, K. et al. Towards the assessment of sediment connectivity in a large Himalayan river basin. Science of the Total Environment, v. 661, p. 251–265, 2019.
NAJAFI, S. et al. Sediment connectivity concepts and approaches. Catena, v. 196, n. August 2020, p. 104880, 2021.
ORTÍZ-RODRÍGUEZ, A. J.; BORSELLI, L.; SAROCCHI, D. Flow connectivity in active volcanic areas: Use of index of connectivity in the assessment of lateral flow contribution to main streams. Catena, v. 157, n. January, p. 90–111, 2017.
PECHENICK, A. M. et al. A multi-scale statistical approach to assess the effects of connectivity of road and stream networks on geomorphic channel condition. EARTH SURFACE PROCESSES AND LANDFORMS, v. 39, p. 1538–1549, 2014.
PERRY, C.; TAYLOR, K. Book Reviews Environmental Sedimentology. v. 7, n. 6, p. 460, 2007.
PERSICHILLO, M. G. et al. The role of human activities on sediment connectivity of shallow landslides. Catena, v. 160, n. September 2017, p. 261–274, 2018.
POTUCKOVA, M.; HÖHLE, J. Assessment of the Quality of Digital Terrain Models by Joachim Höhle and Marketa Potuckova Official Publication No 60. n. January 2011, 2011.
RATHBURN, S. L.; SHAHVERDIAN, S. M.; RYAN, S. E. Post-disturbance sediment recovery: Implications for watershed resilience. Geomorphology, v. 305, p. 61–75, 2018.
RESEARCH, W. U. &. Software LAPSUS, 2018. Disponível em: <https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Soil-Geography-and-Landscape-Group/Research/LAPSUS/Downloads-and-Updates.htm>
TOBIAS, H.; WOLFGANG, S. Geomorphic coupling and sediment connectivity in an alpine catchment — Exploring sediment cascades using graph theory. Elsevier, v. 182, p. 89–103, 2013.
TURNBULL, L.; WAINWRIGHT, J. From structure to function: Understanding shrub encroachment in drylands using hydrological and sediment connectivity. Ecological Indicators, v. 98, n. March 2018, p. 608–618, 2019.
ZANANDREA, F. et al. Conectividade Dos Sedimentos: Conceitos, Princípios E Aplicações. Revista Brasileira de Geomorfologia, v. 21, n. 2, p. 0–3, 2020.
ZANANDREA, F.; KOBIYAMA, M.; MICHEL, G. P. Conectividade Hidrossedimentológica: Uma Abordagem Conceitual. p. 1–8, 2017.
ZINGARO, M. et al. Sediment mobility and connectivity in a catchment: A new mapping approach. Science of the Total Environment, v. 672, p. 763–775, 2019.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Warlen Librelon de Oliveira, Marcelo Antônio Nero, Diego Rodrigues Macedo Macedo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publiquen en esta revista estarán de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y otorgan a la revista el derecho a la primera publicación, con el trabajo con una licencia de uso de atribución CC-BY, que permite distribuir, mezclar, adaptar y crear con base en su trabajo, siempre que sean respetados los derechos de autor, de la forma especificada por CS.
- Los autores están autorizados a asumir contratos adicionales y por separado, para la distribución no exclusiva de la versión del trabajo publicado en esta revista (por ejemplo, publicación en repositorio institucional o como capítulo de un libro), con reconocimiento de autoría y publicación inicial en esta revista.
- Se permite y se alienta a los autores a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) en cualquier momento antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y las citaciones del trabajo publicado (ver El efecto del acceso abierto).