Use of Mobile Phone Data to Obtain Tourism Information
a new methodological approach applied in the state of Espírito Santo/Brazil
DOI:
https://doi.org/10.11606/issn.1984-4867.v30i3p562-580Keywords:
Tourism, Big Data, Mobile, Domestic tourismAbstract
This article presents the experience of the State of Espírito Santo in obtaining tourist data from information on the use of mobile telephony. The technological advancement of the mobile communications industry, the increase in penetration rates in the markets, whether developed or under development, have made mobile phones a daily part of life. Worldwide, there is a growing number of tourism-related surveys that use mobile data. In this sense, the main objective of this study is to present the methodology used to obtain and analyze tourist data of domestic trips, through Big Data from mobile phone records in the State of Espírito Santo, Southeastern Brazil. To this end, the State Secretariat of Tourism of Espírito Santo signed a contract with the company Telefônica Data S.A., using the technology called “Smart Steps”, to carry out tourism surveys in 20 cities and a statewide analysis. The data used correspond to the summer season (January) of the years 2016 and 2017. With the results it will be possible to help and guide the management of tourism.
Downloads
References
Ahas, R., & Mark, Ü. (2005). Location based services—new challenges for planning and public administration?. Futures. 37(6), 547-561.
Ahas, R., Aasa, A., Mark, Ü., Pae, T., & Kull, A. (2007). Seasonal tourism spaces in Estonia: Case study with mobile positioning data. Tourism Management. 28(3), 898-910.
Ahas, R., Aasa, A., Roose, A., Mark, Ü., & Silm, S. (2008). Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management. 29(3), 469-486.
Ahas, R., Aasa, A., Silm, S., & Tiru, M. (2010). Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C: Emerging Technologies. 18(1), 45-54.
Ahas, R., Tiru, M., Saluveer, E., & Demunter, C. (2011). Mobile telephones and mobile positioning data as source for statistics: Estonian experiences. 1st International Workshop on New Trends in Similarity Search NTTS. Uppsala.
Allis, T. (2016). Análises de fluxos turísticos em espaços urbanos: desenvolvimento e aplicação de métodos móveis em Itu (SP). XIII Anais Seminário da Associação Nacional de Pesquisa e Pós-Graduação em Turismo. 1-12.
Asakura, Y., & Hato, E. (2004). Tracking survey for individual travel behaviour using mobile communication instruments. Transportation Research Part C: Emerging Technologies. 12(3-4), 273-291.
Armstrong, K. (2014). Big data: a revolution that will transform how we live, work, and think. Information, Communication & Society. 17, 1300-1302.
Bohte, W., & Maat, K. (2009). Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: A large-scale application in the Netherlands. Transportation Research Part C: Emerging Technologies. 17(3), 285-297.
Brandão, F. (2007). Os observatorios do Turismo como meios de apoio como gestão a competitividade. Dissertação de Mestrado. Universidade de Aveiro, Departamento de Economía, Gestão e Ingenheria Industrial. Portugal.
Brasil, G. H. (2016). Diagnóstico e Avaliação do Potencial Turístico do Município de Vitória/ES. Relatório do projeto de pesquisa e desenvolvimento. Secretaria de Estado do Turismo, Vila Velha-ES.
Breternitz, V. J., Silva, L. A., & Lopes, F. S. (2013). O uso de Big Data em Computacional social Science: tema que a sociedade precisa discutir. Reverte-Revista de Estudos e Reflexões Tecnológicas da Faculdade de Indaiatuba. (11).
Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., & Ratti, C. (2010). Real-time urban monitoring using cell phones: A case study in Rome. IEEE Transactions on Intelligent Transportation Systems. 12(1), 141-151.
Chen, C., Gong, H., Lawson, C., & Bialostozky, E. (2010). Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study. Transportation Research Part A: Policy and Practice. 44(10), 830-840.
Cho, M. H., & Jang, S. (2008). Information value structure for vacation travel. Journal of Travel Research. 47(1), 72-83.
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management. 35(2), 137-144..
Girardin, F., Vaccari, A., Gerber, A., Biderman, A., & Ratti, C. (2009). Towards estimating the presence of visitors from the aggregate mobile phone network activity they generate. International Conference on Computers in Urban Planning and Urban Management.
Gong, H., Chen, C., Bialostozky, E., & Lawson, C. T. (2012). A GPS/GIS method for travel mode detection in New York City. Computers, Environment and Urban Systems. 36(2), 131-139.
Instituto Brasileiro De Geografia E Estatística, IBGE. (2010). Conheça cidades e estados do Brasil - Censo 2010. Referenciado de: https://cidades.ibge.gov.br/. Acesso em: 21 jul. 2017.
Instituto Brasileiro De Geografia E Estatística, IBGE. (2015). Pesquisa Nacional por amostra de Domicílios. Referenciado de: https://ww2.ibge.gov.br/home/estatistica/populacao/trabalhoerendimento/pnad2015/default.shtm. Acesso em 18 ago. 2017.
Iqbal, M. S., Choudhury, C. F., Wang, P., & González, M. C. (2014). Development of origin–destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies. 40, 63-74.
Kuusik, A., Ahas, R., & Tiru, M. (2010). The ability of tourism events to generate destination loyalty towards the country: an Estonian case study. Discussions on Estonian Economic Policy. 18.
Lamsfus, C., Wang, D., Alzua-Sorzabal, A., & Xiang, Z. (2015). Going mobile: Defining context for on-the-go travelers. Journal of Travel Research. 54(6), 691-701.
Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. Meta Group Research Note. 6(70), 1.
Luz, N., Anacleto, R., & Almeida, A. (2010). Tourism mobile and recommendation systems-a state of the art. In Proceedings of the 2010 International Conference on E-Learning, E-Business, Enterprise Information Systems, & E-Government (EEE2010) (pp. 277-283). CSREA EEE.
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Digital.
Mendes Filho, L., Batista, J. D. O., Cacho, A. D. N. B., & Soares, A. L. V. (2017). Aplicativos Móveis e Turismo: um estudo quantitativo aplicando a Teoria do Comportamento Planejado. Rosa dos Ventos. 9(2), 179-199.
Miller, H. J. (2010). The data avalanche is here. Shouldn’t we be digging?. Journal of Regional Science. 50(1), 181-201.
Önder, I., Koerbitz, W., & Hubmann-Haidvogel, A. (2016). Tracing tourists by their digital footprints: The case of Austria. Journal of Travel Research. 55(5), 566-573.
Palhares, G. L., & Panosso Netto, A. (2008). Teoria do turismo: conceitos, modelos e sistemas. São Paulo: Aleph.
Petrocchi, Mário (2009), Turismo: Planejamento e Gestão (2º Ed.) São Paulo: Pearson Prentice Hall.
Reades, J., Calabrese, F., Sevtsuk, A., & Ratti, C. (2007). Cellular census: Explorations in urban data collection. IEEE Pervasive Computing. 6(3), 30-38.
Secretaria De Estado Do Turismo Do Espírito Santo, SETUR-ES. (2011). Plano de Desenvolvimento Sustentável do Turismo: 2025. Espírito Santo.
Shoval, N. (2008). Tracking technologies and urban analysis. Cities. 25(1), 21-28.
Song, H., & Liu, H. (2017). Predicting tourist demand using big data. In Analytics in smart tourism design. Springer. Cham, 13-29.
Steenbruggen, J., Tranos, E., & Nijkamp, P. (2015). Data from mobile phone operators: A tool for smarter cities?. Telecommunications Policy. 39(3-4), 335-346.
Telefônica S.A, (2016) Smart Insights: Informe Metodológico Secretaria de Turismo – Espírito Santo.
United Nations. Statistical Division. (2010). International recommendations for tourism statistics 2008 (No. 83). United Nations Publications.
Ward, J. S., & Barker, A. (2013). Undefined by data: a survey of big data definitions. Journal: arXiv preprint.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Rafael Granvilla Oliveira, Gutemberg Hespanha Brasil, David Theodore O’Keefe

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0), allowing the sharing of the work with recognition of its authorship and initial publication in RTA.







