Osteoporose em lesão medular: reabilitação

Autores

  • Marta Imamura
  • Marina da Paz Takami
  • Sofia Bonna Boschetti Barbosa
  • Alyne Rangifo da Silva
  • Carolina Mendes Pinheiro
  • Leda Maria de Campos Guerra
  • Chennyfer Dobbins Paes da Rosa
  • Wanderley Marques Bernardo
  • Linamara Rizzo Battistella https://orcid.org/0000-0001-5275-0733

DOI:

https://doi.org/10.5935/0104-7795.20130018

Palavras-chave:

Osteoporose, Traumatismos da Medula Espinhal, Reabilitação, Guias de Prática Clínica como Assunto

Resumo

Foram revisados artigos nas bases de dados do MEDLINE (Pub-Med) e outras fontes de pesquisa, sem limite de tempo. A estratégia de busca utilizada baseou-se em perguntas estruturadas na forma P.I.C.O. (das iniciais "Paciente", "Intervençao", "Controle", "Outcome").

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Bauman WA. Risk factors for osteoporosis in persons with spinal cord injury: what we should know and what we should be doing. J Spinal Cord Med. 2004;27(3):212-3.

Garland DE, Adkins RH, Kushwaha V, Stewart C. Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med.2004;27(3):202-6.

Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P, et al. Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2007;92(4):1385-90. DOI: http://dx.doi.org/10.1210/jc.2006-2013

Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53-8. DOI: http://dx.doi.org/10.1210/jc.2010-2704

Bauman WA, Spungen AM, Morrison N, Zhang RL, Schwartz E. Effect of a vitamin D analog on leg bone mineral density in patients with chronic spinal cord injury. J Rehabil Res Dev. 2005;42(5):625-34. DOI: http://dx.doi.org/10.1682/JRRD.2004.11.0145

Jones LM, Legge M, Goulding A. Intensive exercise may preserve bone mass of the upper limbs in spinal cord injured males but does not retard demineralization of the lower body. Spinal Cord. 2002;40(5):230-5. DOI: http://dx.doi.org/10.1038/sj.sc.3101286

Davis R, Sanborn C, Nichols D, Bazett-Jones DM, Dugan EL. The effects of whole body vibration on bone mineral density for a person with a spinal cord injury: a case study. Adapt Phys Activ Q. 2010;27(1):60-72.

Melchiorri G, Andreoli A, Padua E, Sorge R, De Lorenzo A. Use of vibration exercise in spinal cord injury patients who regularly practise sport. Funct Neurol. 2007;22(3):151-4.

Charmetant C, Phaner V, Condemine A, Calmels P. Diagnosis and treatment of osteoporosis in spinal cord injury patients: a literature review. Ann Phys Rehabil Med. 2010;53(10):655-68. DOI: http://dx.doi.org/10.1016/j.rehab.2010.10.001

Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil. 1998;77(1):28-35. DOI: http://dx.doi.org/10.1097/00002060-199801000-00005

Morse LR, Lazzari AA, Battaglino R, Stolzmann KL, Matthess KR, Gagnon DR, et al. Dual energy x-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury. Arch Phys Med Rehabil. 2009;90(5):827-31. DOI: http://dx.doi.org/10.1016/j.apmr.2008.12.004

Bauman WA, Kirshblum S, Cirnigliaro C, Forrest GF, Spungen AM. Underestimation of bone loss of the spine with posterior-anterior dual-energy X-ray absorptiometry in patients with spinal cord injury. J Spinal Cord Med. 2010;33(3):214-20.

Bauman WA, Schwartz E, Song IS, Kirshblum S, Cirnigliaro C, Morrison N, et al. Dual-energy X-ray absorptiometry overestimates bone mineral density of the lumbar spine in persons with spinal cord injury. Spinal Cord. 2009 Aug;47(8):628-33.

Liu CC, Theodorou DJ, Theodorou SJ, Andre MP, Sartoris DJ, Szollar SM, et al. Quantitative computed tomography in the evaluation of spinal osteoporosis following spinal cord injury. Osteoporos Int. 2000;11(10):889-96. DOI: http://dx.doi.org/10.1007/s001980070049

Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I, et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int. 2004;15(3):180-9. DOI: http://dx.doi.org/10.1007/s00198-003-1529-6

World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Geneva: WHO; 1994.

Zehnder Y, Risi S, Michel D, Knecht H, Perrelet R, Kraenzlin M, et al. Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res. 2004;19(7):1067-74. DOI: http://dx.doi.org/10.1359/JBMR.040313

Moran de Brito CM, Battistella LR, Saito ET, Sakamoto H. Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal Cord. 2005;43(6):341-8. DOI: http://dx.doi.org/10.1038/sj.sc.3101725

Bubbear JS, Gall A, Middleton FR, Ferguson-Pell M, Swaminathan R, Keen RW. Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int. 2011;22(1):271-9. DOI: http://dx.doi.org/10.1007/s00198-010-1221-6

Minaire P, Depassio J, Berard E, Meunier PJ, Edouard C, Pilonchery G, et al. Effects of clodronate on immobilization bone loss. Bone. 1987;8 Suppl 1:S63-8.

Pearson EG, Nance PW, Leslie WD, Ludwig S. Cyclical etidronate: its effect on bone density in patients with acute spinal cord injury. Arch Phys Med Rehabil. 1997;78(3):269-72. DOI: http://dx.doi.org/10.1016/S0003-9993(97)90032-0

Nance PW, Schryvers O, Leslie W, Ludwig S, Krahn J, Uebelhart D. Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Arch Phys Med Rehabil. 1999;80(3):243-51. DOI: http://dx.doi.org/10.1016/S0003-9993(99)90133-8

Bauman WA, Wecht JM, Kirshblum S, Spungen AM, Morrison N, Cirnigliaro C, et al. Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev. 2005;42(3):305-13. DOI: http://dx.doi.org/10.1682/JRRD.2004.05.0062

Chappard D, Minaire P, Privat C, Berard E, Mendoza-Sarmiento J, Tournebise H, et al. Effects of tiludronate on bone loss in paraplegic patients. J Bone Miner Res. 1995;10(1):112-8. DOI: http://dx.doi.org/10.1002/jbmr.5650100116

Gordon KE, Wald MJ, Schnitzer TJ. Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PM R. 2013;5(8):663-71. DOI: http://dx.doi.org/10.1016/j.pmrj.2013.03.032

Eser P, Bruin ED, Telley I, Lechner HE, Knecht H, Stüssi E. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest. 2003;33(5):412-9. DOI: http://dx.doi.org/10.1046/j.1365-2362.2003.01156.x

Lai CH, Chang WH, Chan WP, Peng CW, Shen LK, Chen JJ, et al. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med. 2010;42(2):150-4. DOI: http://dx.doi.org/10.2340/16501977-0499

Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C, et al. Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord. 2007;45(1):78-85. DOI: http://dx.doi.org/10.1038/sj.sc.3101929

Chen SC, Lai CH, Chan WP, Huang MH, Tsai HW, Chen JJ. Increases in bone mineral density after functional electrical stimulation cycling exercises in spinal cord injured patients. Disabil Rehabil. 2005;27(22):1337-41. DOI: http://dx.doi.org/10.1080/09638280500164032

Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, Kjaer M. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int. 1997;61(1):22-5. DOI: http://dx.doi.org/10.1007/s002239900286

Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson Nde N, et al. High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone. 2008;43(1):169-76. DOI: http://dx.doi.org/10.1016/j.bone.2008.03.004

Leeds EM, Klose KJ, Ganz W, Serafini A, Green BA. Bone mineral density after bicycle ergometry training. Arch Phys Med Rehabil. 1990;71(3):207-9.

Pacy PJ, Hesp R, Halliday DA, Katz D, Cameron G, Reeve J. Muscle and bone in paraplegic patients, and the effect of functional electrical stimulation. Clin Sci (Lond). 1988;75(5):481-7.

BeDell KK, Scremin AM, Perell KL, Kunkel CF. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil. 1996;75(1):29-34. DOI: http://dx.doi.org/10.1097/00002060-199601000-00008

Shields RK, Dudley-Javoroski S, Law LA. Electrically induced muscle contractions influence bone density decline after spinal cord injury. Spine (Phila Pa 1976). 2006;31(5):548-53. DOI: http://dx.doi.org/10.1097/01.brs.0000201303.49308.a8

Shields RK, Dudley-Javoroski S. Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training. J Neurophysiol. 2006;95(4):2380-90. DOI: http://dx.doi.org/10.1152/jn.01181.2005

Dudley-Javoroski S, Shields RK. Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury. Phys Ther. 2008;88(3):387-96. DOI: http://dx.doi.org/10.2522/ptj.20070224

Groah SL, Lichy AM, Libin AV, Ljungberg I. Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury. PM R. 2010;2(12):1080-7. DOI: http://dx.doi.org/10.1016/j.pmrj.2010.08.003

Bélanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil. 2000;81(8):1090-8. DOI: http://dx.doi.org/10.1053/apmr.2000.7170

Rodgers MM, Glaser RM, Figoni SF, Hooker SP, Ezenwa BN, Collins SR, et al. Musculoskeletal responses of spinal cord injured individuals to functional neuromuscular stimulation-induced knee extension exercise training. J Rehabil Res Dev. 1991;28(4):19-26. DOI: http://dx.doi.org/10.1682/JRRD.1991.10.0019

Shields RK, Dudley-Javoroski S. Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training. Neurorehabil Neural Repair. 2007;21(2):169-79. DOI: http://dx.doi.org/10.1177/1545968306293447

Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD. Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone. 2001;29(5):431-6. DOI: http://dx.doi.org/10.1016/S8756-3282(01)00599-3

Publicado

2013-06-09

Edição

Seção

Artigo Original

Como Citar

1.
Imamura M, Takami M da P, Barbosa SBB, Silva AR da, Pinheiro CM, Guerra LM de C, et al. Osteoporose em lesão medular: reabilitação. Acta Fisiátr. [Internet]. 9º de junho de 2013 [citado 5º de maio de 2024];20(2):112-7. Disponível em: https://revistas.usp.br/actafisiatrica/article/view/103768