Stem cells derived from different tissues have similar morphology, proliferation, viability, plasticity, and mitotic potential
DOI:
https://doi.org/10.11606/issn.1678-4456.bjvras.2024.219450Keywords:
Adipose-derived mesenchymal stem cells, Stromal cells, Pigs, SenescenceAbstract
Studies suggest that stem cells derived from different tissues can give rise to heterogeneous populations of cells, and the adverse effects of successive passages on the mitotic activity of these cells are discussed. Therefore, this study evaluated the differences in morphology, proliferation, plasticity, and viability of porcine MSCs derived from bone marrow (BMMSCs) and adipose (ADMSCs) tissue and the impact of culture until the 10th passage in their cell cycle. MSCs derived from pig adipose tissue and bone marrow were cultured in a D-MEM medium supplemented with fetal bovine serum, non-essential amino acids, L glutamine, and penicillin-streptomycin. These cells were expanded over 10 passages, morphologically and immunophenotypically characterized, and evaluated for viability, proliferation, plasticity, and cell cycle. Our results identified two cell types, ADSCs and BMMSCs, which exhibited spindle-shaped morphology, expression of CD90+/CD105+/CD14- and similar characteristics of proliferation (ADMSCs: 2.34 ± 1.0x105; BM-MSCs: 2.20 ± 0.62 x105), viability (ADMSCs: 84.6%; BM-MSCs: 80.9%) and plasticity. Furthermore, both cell groups showed an increasing concentration of cells in G0/G1 from the sixth passage onwards. In conclusion, the morphology, proliferation, viability, plasticity, and immunophenotype of porcine ADMSCs and BMMSCs are similar. Furthermore, it is possible to suggest that both groups of cells have a gradual reduction in mitotic potential from the sixth passage onwards.
Downloads
References
Aliabouzar M, Lee S-J, Zhou X, Zhang GL, Sarkar K. Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells. Biotechnol Bioeng. 2018;115(2):495-506. http://doi.org/10.1002/bit.26480. PMid:29064570.
Alves EGL, Serakides R, Rosado IR, Boeloni JN, Ocarino NM, Rezende CMF. Isolamento e cultivo de células tronco mesenquimais extraídas do tecido adiposo e da medula óssea de cães. Cienc Anim Bras. 2017;18(1-14):e34050. http://doi.org/10.1590/1089-6891v18e-34050.
Argôlo Neto NM, Feitosa MLT, Sousa SS, Fernandes PB, Pessoa GT, Bezerra DO, Almeida HM, Carvalho YKP, Rocha AR, Silva LMC, Carvalho MAM. Isolation, expansion, differentiation and growth kinetics essay in mesenchymal stem cells culture from the bone marrow of collared peccaries (Tayassu tajacu). Acta Sci Vet. 2016;44:1341.
Arjmand M, Ardeshirylajimi A, Maghsoudi H, Azadian E. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field. J Cell Physiol. 2018;233(2):1061-70. http://doi.org/10.1002/jcp.25962. PMid:28419435.
Bartosh TJ, Ylostalo JH. Efficacy of 3D culture priming is maintained in human mesenchymal stem cells after extensive expansion of the cells. Cells. 2019;8(9):1031. http://doi.org/10.3390/cells8091031. PMid:31491901.
Caplan AI. Células-tronco mesenquimais. J Orthop Res. 1991;9:641-50. http://doi.org/10.1002/jor.1100090504. PMid:1870029. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6(6):1445-51. http://doi.org/10.1002/sctm.17-0051. PMid:28452204.
Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11-5. http://doi.org/10.1016/j.stem.2011.06.008. PMid:21726829.
Carvalho YKP, Argôlo-Neto NM, Ambrósio CE, Oliveira LJ, Rocha AR, Silva JB, Carvalho MAM, Alves FR. Isolation, expansion and differentiation of cellular progenitors obtained from dental pulp of agouti (Dasyprocta prymnolopha Wagler, 1831). Pesq Vet Bras. 2015;35(6):590-8. http://doi.org/10.1590/S0100-736X2015000600018.
Costa CRM, Feitosa MLT, Bezerra DO, Carvalho YKP, Olivindo RFG, Fernando PB, Silva GC, Silva MLG, Ambrósio CE, Conde Júnior AM, Argolo Neto NM, Costa Silva LM, Carvalho MAM. Labeling of adipose-derived stem cells with quantum dots provides stable and long-term fluorescent signal for ex vivo cell tracking. In Vitro Cell Dev Biol Anim. 2017;53(4):363-70. http://doi.org/10.1007/s11626-016-0121-2. PMid:28039619.
Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng P-N, Traas J, Schugar R, Deasy BM, Badylak S, Buhring H-J, Giacobino J-P, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301-13. http://doi.org/10.1016/j.stem.2008.07.003. PMid:18786417.
Dariolli R, Bassaneze V, Nakamuta JS, Omae SV, Campos LCG, Krieger JE. Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation. PLoS One. 2013;8(7):e67939. http://doi.org/10.1371/journal.pone.0067939. PMid:23874472.
Esteves CL, Sheldrake TA, Mesquita SP, Pesántez JJ, Menghini T, Dawson L, Péault B, Donadeu FX. Isolation and characterization of equine native MSC populations. Stem Cell Res Ther. 2017;8(1):80. http://doi.org/10.1186/s13287-017-0525-2. PMid:28420427.
Freitas Siqueira Silva ERD, Argôlo Neto NM, Oliveira Bezerra D, Moura Dantas SMM, Santos Silva L, Silva AA, Moura CRC, Gomes Júnior AL, Braz DC, Costa JRF, Carvalho Leite YK, Carvalho MAM. Renal progenitor cells have higher genetic stability and lower oxidative stress than mesenchymal stem cells during in vitro expansion. Oxid Med Cell Longev. 2020;2020:6470574. http://doi.org/10.1155/2020/6470574. PMid:32695258.
Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189(1):54- 63. http://doi.org/10.1002/jcp.1138. PMid:11573204.
Kaewkhaw R, Scutt AM, Haycock JW. Anatomical site influences the differentiation of adipose-derived stem cells for Schwann-cell phenotype and function. Glia. 2011;59(5):734-49. http://doi.org/10.1002/glia.21145. PMid:21351157.
Kalra K, Tomar PC. Stem cell: basics, classification and applications. Am J Phytomed Clin Ther. 2014;2:919-30.
Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019;11(6):347- 74. http://doi.org/10.4252/wjsc.v11.i6.347. PMid:31293717.
Lechanteur C, Briquet A, Giet O, Delloye O, Baudoux E, Beguin Y. Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J Transl Med. 2016;14(1):145. http://doi.org/10.1186/s12967-016-0892-y. PMid:27207011.
Liu Y, Holmes C. Tissue regeneration capacity of extracellular vesicles isolated from bone marrow-derived and adiposederived mesenchymal stromal/stem cells. Front Cell Dev Biol. 2021;9:648098. http://doi.org/10.3389/fcell.2021.648098. PMid:33718390.
Luck J, Weil BD, Lowdell M, Mosahebi A. Adipose-derived stem cells for regenerative wound healing applications: understanding the clinical and regulatory environment. Aesthet Surg J. 2020;40(7):784-99. http://doi.org/10.1093/asj/sjz214. PMid:31406975.
Monaco E, Bionaz M, Hollister SJ, Wheeler MB. Strategies for regeneration of the bone using porcine adult adipose-derived mesenchymal stem cells. Theriogenology. 2011;75(8):1381- 99. http://doi.org/10.1016/j.theriogenology.2010.11.020. PMid:21354606.
Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, culture, and characterization of human mesenchymal stem cells. Cytometry A. 2018;93(1):19-31. http://doi.org/10.1002/cyto.a.23242. PMid:29072818.
Neves GCS, Argôlo Neto NM, Ferraz MS, Costa CRM, Rocha AR, Rodrigues HWS, Nunes FC, Carvalho CES, Cavalcante Filho MF, Menezes DJA, Carvalho MAM. Characterization and plasticity of wharton’s jelly mesenchymal stem cells of goat. Biosci J. 2021;37:e37002. http://doi.org/10.14393/BJ-v37n0a2021-50386.
Pool MB, Vos J, Eijken M, van Pel M, Reinders ME, Ploeg RJ, Hoogduijn MJ, Jespersen B, Leuvenink HGD, Moers C. Treating ischemically damaged porcine kidneys with human bone marrow-and adipose tissue-derived mesenchymal stromal cells during ex vivo normothermic machine perfusion. Stem Cells Dev. 2020;29(20):1320-30. http://doi.org/10.1089/scd.2020.0024. PMid:32772797.
Reumann MK, Linnemann C, Aspera-Werz RH, Arnold S, Held M, Seeliger C, Nussler AK, Ehnert S. Donor site location is critical for proliferation, stem cell capacity, and osteogenic differentiation of adipose mesenchymal stem/ stromal cells: implications for bone tissue engineering. Int J Mol Sci. 2018;19(7):1868. http://doi.org/10.3390/jms19071868. PMid:29949865.
Rocha AR, Leite YKC, Silva AS, Conde AM, Costa CRM, Silva GC, Carvalho MAM. Immunophenotyping, plasticity tests and nanotagging of stem cells derived from adipose tissue of wild rodent agouti (Dasyprocta prymnolopha). Arq Bras Med Vet Zootec. 2019;71(5):1571-81. http://doi.org/10.1590/1678-4162-10677.
Rodríguez Del Águila M, González-Ramírez A. Sample size calculation. Allergol Immunopathol. 2014;42(5):485-92. http://doi.org/10.1016/j.aller.2013.03.008. PMid:24280317.
Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. J Nephrol. 2010;23(Suppl 15):S29-36. PMid:20872368.
Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther. 2015;15(9):1285-92. http://doi.org/10.1517/14712598.2015.1053867. PMid:26037027.
Silva Filho OF, Argôlo Neto NM, de Carvalho MAM, de Carvalho YK, Diniz AN, Moura LS, Ambrósio CE, Monteiro JM, Almeida HM, Miglino MA, Alves JJRP, Macedo KV, Rocha AR, Feitosa MLT, Alves FR. Isolation and characterization of mesenchymal progenitors derived from the bone marrow of goats native from northeastern Brazil. Acta Cir Bras. 2014;29:478-84. http://doi.org/10.1590/S0102-86502014000800001.
Soundararajan M, Kannan S. Fibroblasts and mesenchymal stem cells: two sides of the same coin? J Cell Physiol. 2018;233(12):9099-109. http://doi.org/10.1002/jcp.26860. PMid:29943820.
Sousa RP, Duarte ABG, Pinto Y, Sá NAR, Alves BG, Cibin FWS, Silva GC, Carvalho CES, Argôlo Neto NM, Rodrigues APR, Silva CMG, Figueiredo JR, Carvalho MAM. In vitro activation and development of goat preantral follicles enclosed in ovarian tissue co-cultured with mesenchymal stem cells. Reprod Sci. 2021;28(6):1709-17. http://doi.org/10.1007/s43032-021-00540-3. PMid:33721296.
Souza LEB, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal stem cells and pericytes: to what extent are they related? Stem Cells Dev. 2016;25(24):1843-52. http://doi.org/10.1089/scd.2016.0109. PMid:27702398.
Truong NC, Bui KHT, Van Pham P. Characterization of senescence of human adipose-derived stem cells after long-term expansion. In: Jo I, Cho CS, editors. Tissue engineering and regenerative medicine. New York: Springer International Publishing; 2019. pp. 109-28.
Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol. 2005;205(2):194-201. http://doi.org/10.1002/jcp.20376. PMid:15880640.
Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008;3(5):e2213. http://doi.org/10.1371/journal.pone.0002213. PMid:18493317.
Wang KH, Kao AP, Wangchen H, Wang FY, Chang CH, Chang CC, Lin SD. Optimizing proliferation and characterization of multipotent stem cells from porcine adipose tissue. Biotechnol Appl Biochem. 2008;51(Pt 4):159-66. http://doi.org/10.1042/BA20070201. PMid:18279148.
Williams KJ, Picou AA, Kish SL, Giraldo AM, Godke RA, Bondioli KR. Isolation and characterization of porcine adipose tissue-derived adult stem cells. Cells Tissues Organs. 2008;188(3):251-8. http://doi.org/10.1159/000121431. PMid:18349524.
Yin Q, Xu N, Xu D, Dong M, Shi X, Wang Y, Hao Z, Zhu S, Zhao D, Jin H, Liu W. Comparison of senescence-related changes between three-and two-dimensional cultured adipose-derived mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):226. http://doi.org/10.1186/s13287020-01744-1. PMid:32517737.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Veterinary Research and Animal Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal content is authorized under the Creative Commons BY-NC-SA license (summary of the license: https://