Biogeographic regionalization of human infectious diseases in the Parana State
DOI:
https://doi.org/10.11606/eISSN.2236-2878.rdg.2025.215597Keywords:
Beta-diversity, Clustering, Pathogeography, TurnoverAbstract
Biogeographic regionalization represents abstractions of the organization of life on Earth, and it can provide a large-scaled framework for health management and planning. We aimed at determining a biogeographic regionalization for human infectious diseases in the Parana State, Brazil, and at investigating non-mutually exclusive hypotheses predicting the observed regions. Based on the spatial distributions of 11 infectious diseases with mandatory notification (SINAN database, 2007 to 2020, n=1,012), we identified regions through a clustering procedure based on beta-diversity turnover. The analysis was repeated 1000 times by randomly shuffling the rows (0.25° cells) in the original matrix. We evaluated the relative importance of variables using multinomial logistic regression models: contemporary climate (temperature and precipitation), human activity (population density and geographic accessibility), land cover (5 classes), and the full model (all variables). The three-cluster solution was the most independent and informative solution. Clusters occurred in the northern, northwestern, and southern portion of the State. The best model for explaining the regionalization was the full model, supporting the ‘complex association’ hypothesis. Our findings indicate that there is a discernible pattern in the turnover of disease in the Parana State, and this phenomenon was associated with an intricate interplay between contemporary climate, population activity, and land cover. We suggested that the regionalization could be adopted as a statewide framework for geographic vaccine allocation.
Downloads
References
ARAZ, O. M.; GALVANI, A.; MEYERS, L. A. Geographic prioritization of distributing pandemic influenza vaccines. Health Care Management Science, v. 15, p. 175–187, 2012.
BORCARD, D.; GILLET, F.; LEGENDRE, P. Numerical Ecology with R. 1. ed. Nova Iorque: Springer, 2011. 306p.
BRASIL. Portaria número 204, de 17 de fevereiro de 2016 - Define a Lista Nacional de Notificação Compulsória de doenças, agravos e eventos de saúde públicos e privados em todo o território nacional, nos termos do anexo, e dá outras providências. Diário Oficial da União, n. 32, Seção I, p. 23-24, 2016.
BURNHAM, K. P.; ANDERSON, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach. 2.ed. Nova Iorque: Springer-Verlag, 2002. 515p.
CAETANO, R. Sistema de Informação de Agravos de Notificação (SINAN). In: BRASIL. A Experiência Brasileira em Sistemas de Informação em Saúde: Volume 2: falando sobre os sistemas de informação em saúde no Brasil. Brasília: Editora do Ministério da Saúde, 2009. cap. 3, p. 41-64.
CAPRARELLI, G.; FLETCHER, S. A brief review of spatial analysis concepts and tools used for mapping, containment and risk modelling of infectious diseases and other illnesses. Parasitology, v. 141, n. 5, p. 581–601, 2014.
CARDOSO, D. T.; DE SOUZA, D. C.; DE CASTRO, V. N.; GEIGER, S. M.; BARBOSA, D. S. Identification of priority areas for surveillance of cutaneous leishmaniasis using spatial analysis approaches in Southeastern Brazil. BMC infectious diseases, v. 19, p. 1-11, 2019.
CASHDAN, E. Biogeography of human infectious diseases: A global historical analysis. PLoS ONE, v. 9, n. 10, p. 1–11, 2014.
DAPPORTO, L.; CIOLLI, G.; DENNIS, R. L. H.; FOX, R.; SHREEVE, T. G. A new procedure for extrapolating turnover regionalization at mid‐small spatial scales, tested on British butterflies. Methods in Ecology and Evolution, v. 6, n. 11, p. 1287–1297, 2015.
DAPPORTO, L.; RAMAZZOTTI, M.; FATTORINI, S.; TALAVERA, G.; VILA, R.; DENNIS, R. L. H. Recluster: An unbiased clustering procedure for beta-diversity turnover. Ecography, v. 36, n. 10, p. 1070–1075, 2013.
DIAS, T. P; VERSTEG, N.; JARDIM, G. DE C.; BORGES, L. V.; LEAL, K. B.; GRESSLER, R. P.; FIGUEIREDO, F. B.; CLEFF, M. B. Leishmaniose visceral na região sul do Brasil: análise crítica frente a evolução epidemiológica. Research, Society and Development, v. 11, n. 5, p. e45711528361-e45711528361, 2022.
DOXSEY-WHITFIELD, E.; MACMANUS, K.; ADAMO, S. B.; LINDA, P.; SQUIRES, J.; BORKOVSKA, O.; BAPTISTA, S. R. Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded Population of the World, Version 4. Papers in Applied Geography, v. 1, n. 3, p. 226–234, 2015.
DROISSART, V.; DAUBY, G.; HARDY, O. J.; DEBLAUWE, V.; HARRIS, D. J.; JANSSENS, S.; MACKINDER, B. A.; BLACH-OVERGAARD, A; SONKÉ, B.; SOSEF, M. S.M.; STÉVART, T.; SVENNING, J. C.; WIERINGA, J. J.; COUVREUR, T. L. P. Beyond trees: Biogeographical regionalization of tropical Africa. Journal of Biogeography, v. 45, n. 5, p. 1153–1167, 2018.
DURÃES, L. S.; BITENCOURTH, K.; RAMALHO, F. R.; NOGUEIRA, M. C.; NUNES, E. DE C.; GAZÊTA, G. S. Biodiversity of potential vectors of rickettsiae and epidemiological mosaic of spotted fever in the state of Paraná, Brazil. Frontiers in Public Health, v. 9, p. 577789, 2021.
ESCALANTE, T. Un ensayo sobre regionalización biogeográfica. Revista Mexicana de Biodiversidad, v. 80, n. 2, p. 551–560, 2009.
EVERTJE, L.; JAARSVELD, W. VAN; DEKKER, R. The vaccine supply chain. European Journal of Operational Research, v. 268, n. 1, p. 174–192, 2018.
FAO. The State of the World’s Land and Water Resources for Food and Agriculture – Systems at breaking point: systems at breaking point. 1.ed. Roma: Food and Agriculture Organization of the United Nations , 2021. 82p.
FICK, S. E.; HIJMANS, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, v. 37. n. 12, p. 4302 - 4315, 2017.
GODINHO, M. B. D. C.; DA SILVA, F. R. The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports, v. 8, n. 1, p. 1–11, 2018.
GONZÁLEZ-OROZCO, C. E.; LAFFAN, S. W.; KNERR, N.; MILLER, J. T. A biogeographical regionalization of Australian Acacia species. Journal of Biogeography, v. 40, n. 11, p. 2156–2166, 2013.
GREER, A.; NG, V.; FISMAN, D. Climate change and infectious diseases in North America: the road ahead. Canadian Medical Association Journal, v. 178, n. 6, p. 715–722, 2008.
GUERNIER, V.; HOCHBERG, M. E.; GUÉGAN, J. F. Ecology drives the worldwide distribution of human diseases. PLoS Biology, v. 2, n. 6, p. 740–746, 2004.
HOLT, B. G.; LESSARD, J.-P. J. P.; BORREGAARD, M. K.; FRITZ, S. A.; ARAÚJO, M. B.; DIMITROV, D.; FABRE, P. H. P.-H.; GRAHAM, C. H.; GRAVES, G. R.; JØNSSON, K. A.; NOGUÉS-BRAVO, D.; WANG, Z.; WHITTAKER, R. J.; FJELDSÅ, J.; RAHBEK, C. An update of Wallace’s zoogeographic regions of the world. Science, v. 339, n. 6115, p. 74–78, 2013.
IBGE. Manual técnico da vegetação brasileira, número 1. 2ª. edição revista e ampliada. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2012. 271p.
JOHNSON, P. T. J.; DE ROODE, J. C.; FENTON, A. Why infectious disease research needs community ecology. Science, v. 349, n. 6252, 2015.
KEELING, M. J.; SHATTOCK, A. Optimal but unequitable prophylactic distribution of vaccine. Epidemics, v. 4, n. 2, p. 78–85, 2012.
KEESING, F.; BELDEN, L. K.; DASZAK, P.; DOBSON, A.; HARVELL, C. D.; HOLT, R. D.; HUDSON, P.; JOLLES, A.; JONES, K. E.; MITCHELL, C. E.; MYERS, S. S.; BOGICH, T.; OSTFELD, R. S. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, v. 468, n. 7324, p. 647–652, 2010.
KHATUA, A.; KAR, T. K.; NANDI, S. K.; JANA, S.; KANG, Y. Impact of human mobility on the transmission dynamics of infectious diseases. Energy, Ecology and Environment, v. 5, n. 5, p. 389–406, 2020.
KREFT, H.; JETZ, W. A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, v. 37, n. 11, p. 2029–2053, 2010.
LAGUARDIA, J.; DOMINGUES, C. M. A.; CARVALHO, C.; LAUERMAN, C. R.; MACÁRIO, E.; GLATT, R. Sistema de Informação de Agravos de Notificação (Sinan): desafios no desenvolvimento de um sistema de informação em saúde. Epidemiologia e Serviços de Saúde, v. 13, n. 3, p. 135–146, 2004.
LÖWENBERG-NETO, P.; WINKELMANN, S.; VERZOTTO, K. Biogeographic regionalization of human infectious diseases in Brazil based on geographically explicit data. Tropical Medicine and International Health, 2023. https://doi.org/10.1111/tmi.13914
MAGDA, C.; SANTOS, A.; MARANHÃO, A. G. K. 46 anos do Programa Nacional de Imunizações: uma história repleta de conquistas e desafios a serem superados. Cadernos de Saúde Pública, v. 36, n. Sup 2, p. 1–17, 2020.
MATRAJT, L.; HALLORAN, M. E.; LONGINI, I. M. Optimal Vaccine Allocation for the Early Mitigation of Pandemic Influenza. PLoS Computational Biology, v. 9, n. 3, p. e1002964, 2013.
MELO, H. A.; ROSSONI, D. F.; TEODORO, U. Spatial distribution of cutaneous leishmaniasis in the state of Paraná, Brazil. PLoS One, v. 12, n. 9, p. e0185401, 2017.
METCALF, C. J. E.; WALTER, K. S.; WESOLOWSKI, A.; BUCKEE, C. O.; SHEVLIAKOVA, E.; TATEM, A. J.; BOOS, W. R.; WEINBERGER, D. M.; PITZER, V. E. Identifying climate drivers of infectious disease dynamics: Recent advances and challenges ahead. Proceedings of the Royal Society B: Biological Sciences, v. 284, n. 1860, 2017.
MOURA, E. N.; PROCOPIUCK, M. GIS-based spatial analysis: basic sanitation services in Parana State, Southern Brazil. Environmental monitoring and assessment, v. 192, n. 2, p. 96, 2020.
MURRAY, K. A.; DASZAK, P. Human ecology in pathogenic landscapes: Two hypotheses on how land use change drives viral emergence. Current Opinion in Virology, v. 3, n. 1, p. 79–83, 2013.
MURRAY, K. A.; OLIVERO, J.; ROCHE, B.; TIEDT, S.; GUÉGAN, J. F. Pathogeography: leveraging the biogeography of human infectious diseases for global health management. Ecography, v. 41, n. 9, p. 1411–1427, 2018.
MURRAY, K. A.; PRESTON, N.; ALLEN, T.; ZAMBRANA-TORRELIO, C.; HOSSEINI, P. R.; DASZAK, P. Global biogeography of human infectious diseases. Proceedings of the National Academy of Sciences, v. 112, n. 41, p. 12746–12751, 2015.
NEIDERUD, C. J. How urbanization affects the epidemiology of emerging infectious diseases. African Journal of Disability, v. 5, n. 1, p. 1–9, 2015.
NELSON, A.; WEISS, D. J.; VAN ETTEN, J.; CATTANEO, A.; MCMENOMY, T. S.; KOO, J. A suite of global accessibility indicators. Scientific Data, v. 6, n. 1, p. 1–9, 2019.
PETERSON, A. T. Biogeography of diseases: A framework for analysis. Naturwissenschaften, v. 95, n. 6, p. 483–491, 2008.
POULIN, R. Parasite biodiversity revisited: frontiers and constraints. International Journal for Parasitology, v. 44, n. 9, p. 581–589, 2014.
PRIST, P.R.; PRADO, A.; TAMBOSI, L.R.; UMETSU, F.; DE ARRUDA BUENO, A.; PARDINI, R.; METZGER, J.P. Moving to healthier landscapes: Forest restoration decreases the abundance of Hantavirus reservoir rodents in tropical forests. Science of The Total Environment. v. 752, p. 141967, 2021.
QGIS DEVELOPMENT TEAM. QGIS Geographic Information System. Open Source Geospatial Foundation Project, 2022. Disponível em: http://qgis.osgeo.org. Acesso em: 22/01/2022.
RAMOS, M. C.; BARRETO, J. O. M.; SHIMIZU, H. E.; MORAES, A. P. G. D.; SILVA, E. N. D. Regionalization for health improvement: A systematic review. PLoS One, v. 15, n. 12, p. e0244078, 2020.REISEN, W. K. Landscape Epidemiology of Vector-Borne Diseases. Annual Review of Entomology, v. 55, n. 1, p. 461–483, 2010.
ROUSSEEUW, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, v. 20, p. 53–65, 1987.
SCHEINER, S. M. The intersection of the sciences of biogeography and infectious disease ecology. EcoHealth, v. 6, n. 4, p. 483–488, 2009.
SINAN. Sistema de Informação de Agravos de Notificação. Brasília: Ministério da Saúde, 2021. Disponível em: https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/. Acesso em: 31 de julho de 2021.
SMITH, K. F.; SAX, D. F.; GAINES, S. D.; GUERNIER, V.; GUÉGAN, J. F. Globalization of human infectious disease. Ecology, v. 88, n. 8, p. 1903–1910, 2007.
STENSGAARD, A. S.; DUNN, R. R.; VENNERVALD, B. J.; RAHBEK, C. The neglected geography of human pathogens and diseases. Nature Ecology and Evolution, v. 1, n. 7, p. 1–2, 2017.
STEPHENS, P. R.; ALTIZER, S.; SMITH, K. F.; ALONSO AGUIRRE, A.; BROWN, J. H.; BUDISCHAK, S. A.; BYERS, J. E.; DALLAS, T. A.; JONATHAN DAVIES, T.; DRAKE, J. M.; EZENWA, V. O.; FARRELL, M. J.; GITTLEMAN, J. L.; HAN, B. A.; HUANG, S.; HUTCHINSON, R. A.; JOHNSON, P.; NUNN, C. L.; ONSTAD, D.; PARK, A.; VAZQUEZ-PROKOPEC, G. M.; SCHMIDT, J. P.; POULIN, R. The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecology letters, v. 19, n. 9, p. 1159–1171, 2016.
VENABLES, W. N.; RIPLEY, B. D. Modern Applied Statistics with S. 4. ed. Nova Iorque: Springer, 2002. 505p.
VILELA, B.; VILLALOBOS, F. LetsR: A new R package for data handling and analysis in macroecology. Methods in Ecology and Evolution, v. 6, n. 10, p. 1229–1234, 2015.
WALLACE, A. R. The geographical distribution of animals. With a study of the relations of living and extinct faunas as elucidating the past changes of the earth’s surface. Nove Iorque: Harper and brothers, 1876.
WHO. Schistosomiasis and soil-transmitted helminthiases: Progress report, 2020. Weekly Epidemiological Record, v. 96, p. 585–595, 2021.
WU, J. T.; RILEY, S.; LEUNG, G. M. Spatial considerations for the allocation of pre-pandemic influenza vaccination in the United States. Proceedings of the Royal Society B: Biological Sciences, v. 274, p. 2811–2817, 2007.
ZUUR, A. F.; IENO, E. N.; ELPHICK, C. S. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, v. 1, n. 1, p. 3–14, 2010.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Peter Löwenberg Neto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution BY-NC-SA que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista. A licença adotada enquadra-se no padrão CC-BY-NC-SA.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).